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Abstract

Gas injection can serve as an effective enhanced recovery method for oil and gas pro-
duction. With an assumption that the displacement is isothermal and without ad-
sorption or desorption at the rock surfaces, an analytical theory has been established
for solving the set of hyperbolic partial differential equations in one-dimension that
describes the mass conservation of the individual fluid components using a method
of characteristics approach. However, in some injection processes, the injection gas
may be at a temperature that differs from that of the initial reservoir. In problems
such as enhanced coal-bed methane recovery by CO. injection, adsorption and des-
orption play significant roles and are not negligible. The variation in temperature and
adsorption and desorption of components changes the fluid properties and interacts
with the propagation of the fluids.

In this work, the analytical theory is extended to consider the effects of variable
temperature and adsorption and desorption of components from rock surfaces. and is
applied to enhanced coal-bed methane and oil recovery separately. In both problems,
the phase behavior is represented by the Peng-Robinson equation of state.

In enhanced coal-bed methane recovery by gas injection, we maintain the isother-
mal flow assumption and focus on the effect of adsorption/desorption of the gas
components at the coal-bed surfaces. A mobile liquid phase is not considered in
this section. The adsorption behavior is approximated by an extended Langmuir
isotherm. Mixtures of CHy, CO, and N, are used to represent coal-bed and injection
gases. Example solutions are presented for systems in which the initial gas has high
CH, concentrations, and binary mixtures of CO, and N, are injected. The solutions

obtained show that injection of Na-CO, mixtures rich in N> leads to relatively fast



initial recovery of C Hy. Injection of mixtures rich in CO, gives slower initial recov-
ery, increases breakthrough time, and decreases the injectant needed to sweep out the
coal-bed.

When temperature is allowed to vary in enhanced oil recovery by gas injection,
adsorption and desorption of fuid components at rock surfaces are neglected in the
analysis. An energy balance is introduced to describe the flow of energy due to vari-
ation in temperature. Solution construction procedures are demonstrated through
examples in one-component and binary systems. A careful examination of the solu-
tions in binary systems reveals that for many cases the temperature fronts propagate
slowly and separately from the composition fronts. The propagation of composition
fronts is accompanied only by small temperature variation resulting from heat of con-
densation and vaporization. In this case, it is reasonable to assume isothermal flow
at the downstream end. because the temperature variation occurs completely within
the injected gas. However, under certain conditions, the temperature fronts catch up
to and interact with trailing composition fronts. The simultaneous propagation of
temperature and composition fronts is examined in detail for this scenario.

For both of the gas injection problems, a one-dimensional finite-difference scheme
with single-point upstream weighting is developed to confirm the solutions obtained
with the analytical approach, and yields satisfactory agreement. The computer time
required for finite-difference simulations, however, is orders of magnitude higher than
that of the analytical approach. More importantly, some of the subtle and fine struc-
tures revealed only by the analytical approach are obscured and become indistinguish-
able in finite-difference simulations due to numerical dispersion. Hence, the analytical
solution method proves to be a useful tool to investigate individual aspects of multi-
component multiphase flow through media without the effect of numerical dispersion

at only a fraction of the computation cost of finite-difference simulations.
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Chapter 1

Introduction

Gas injection has been widely adopted in the oil industry as an efficient method of
enhanced oil recovery. When applied to enhance the recovery of coal-bed methane,
injection of CO, can also serve as a sequestration method for greenhouse gases.

The injected gases are compressed before arriving at the oil layers, often at a dif-
ferent temperature than that of the reservoir. The temperature difference is especially
evident if the gas injection procedure is scheduled after waterflooding using cold sea
water, as has been practiced in some of the North Sea and Alaskan oil fields. When
the injected gas mixes with the reservoir fluids originally in place, two phases may
form when local thermodynamic phase equilibrium is established. The reservoir fluids
may exchange heat with the reservoir rock due to temperature difference and chem-
ical species through adsorption and desorption at the reservoir rock surfaces. This
process occurs repeatedly as the newly formed fluid phases propagate through the
reservoir rocks at different rates and along different paths, according to the physical
properties of the flowing phases and the heterogeneity of the reservoir rocks. Hence,
the gas injection process is a problem of two-phase flow through a porous medium
coupled with phase behavior of 2 multicomponent mixture.

Analytical solution methods can be used to isolate individual mechanisms that
drive the gas injection process and provide a better understanding of the solution

physics. Analytical solutions can also be used in combination with streamline methods
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for reservoir simulation to yield very fast computational tools for modeling three-
dimensional displacement [13]. However, in order to eliminate some of the complexity
of the general flow, it is often assumed that flow occurs at constant temperature and
without adsorption or desorption at the reservoir rock surfaces. The objective of
this dissertation is to extend the analytical theory by including and studying the

physical effects of variable temperature and adsorption or desorption on gas injection
processes.

1.1 Theory of Two-Phase Multicomponent Flow

in Porous Media at Constant Temperature

A general analytical theory for multicomponent multiphase gas displacements starts
with material balances for individual components. When defined in a one-dimensional
model in which dispersion is neglected, the material balances result in a series of quasi-
linear, hyperbolic conservation equations. Furthermore, when the initial condition of
the reservoir fluids is uniform and constant, and gas is injected at constant compo-
sition and rate, the flow problem is a Riemann problem that can be solved with the
method of characteristics. Early study of gas/oil displacements using the method of
characteristics was limited to systems with no more than three components and two
phases. Welge et al. [39] presented the first analytical solution to the gas injection
problem in ternary system where the volume change of components upon mixing
was considered. Wachmann [36] studied alcohol flooding in ternary systems where
the assumption of no volume change upon mixing seemed acceptable, which simpli-
fied the displacement problem significantly. Later, Larson et al. 23], Larson [22],
Helfferich [10] and Hirasaki [11] investigated surfactant/oil/water displacements ex-
tensively. Helfferich [10] formulated the work into a general theory that described the
underlying mathematics of multiphase multicomponent flow through porous media.
The theory was then applied to gas injection problems in ternary systems by Dumoré
et al. [6], where the effects of volume change upon mixing were again included.

Monroe et al. [27] reported the first solutions for systems with four components.
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Johns et al. [17] [18] studied gas injection in four-component systems where mo-
lar density of the components remained constant in different phases. Dindoruk et
al. [4] [5] tackled similar problems but considered the effect of volume change as com-
ponents transfer between phases. The four-component theory was later applied to
study the effect of gas enrichment by Johns et al. [19]. Orr et al [28] studied the
development of miscibility in gas/oil displacement processes using carbon dioxide as
injection gases. Wang and Orr [37] [38] extended the solution method to systems with
an arbitrary number of components, assuming only shock solution segments across a
sequence of key tie-lines. The development of the analytical theory led to an efficient
solution method for calculating the minimum miscible pressure (MMP). Jessen [12]
and Ermakov (7] considered the effect of volume change on the analytical solutions for
systems with arbitrary number of components. In the most recent development of the
analytical theory, Jessen et al. [14] presented a systematic method to determine where
a rarefaction solution segment would occur and introduced the concept of primary
key tie line where the solution construction process should begin in a system with
arbitrary number of components. The solutions presented by Jessen et al. included
both rarefaction and shock solution segments across the key tie lines but neglected
the volume change of components upon mixing. The analytical solutions reported by
these investigations have been confirmed with finite-difference simulations for systems

with both rarefaction and shock solution segments.

1.2 Gas Injection with Variable Temperature

While the analytical theory of multicomponent gas/oil displacement is now well de-
veloped, there still exist various restrictions. One of these requirements is that the
temperature remain constant throughout the gas injection process. However, the
reservoir temperature may not be uniform and identical to that of the injection flu-
ids, especially when thermal recovery methods are employed in oil fields. Temperature
changes may therefore accompany the displacement process. On one hand, the vari-
ations in temperature affect the phase behavior because thermodynamic equilibrium

depends on temperature. On the other hand, temperature variation influences the
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multiphase flow by altering the physical properties of the phases such as densities and
viscosities. Limited efforts have been invested on the analytical solutions for flows
with temperature variations. Fayers [8] analyzed the displacement of oil by hot water
using the method of characteristics. He studied the cases where thermal capacities
are constant or dependent on temperature and investigated the shock solutions across
which both saturation and temperature may vary. Shutler and Boberg [34] presented
an approximate solution for flow of steam, water and oil. Lake [20] provided an
analysis of the propagation of temperature fronts for steam and hot water flooding.
Later, Wingard [40] [41] studied the flow of steam, water and oil including the ef-
fect of temperature on phase density and condensation of steam into water phases.
However, steam, water and oil were assumed to be immiscible, and the effect of hy-
drocarbon components transferring between phases was not considered. Wingard's
analysis showed that three phases occur during the steam injection processes with
a steam/oil zone near the injection end, an oil/water zone at the downstream end
and a steam/water/oil zone in between. It was shown that as long as condensation
of steam occurs, the Gibbs phase rule required that the steam/water/oil zone be at
constant temperature, which simplified the problem significantly. Wingard focused
on solving the shock balances where the temperatures are known on both sides of
the shock. Wingard also discussed the problem of three-component, three-phase flow
with temperature variation where the injected carbon dioxide and the reservoir oil
are no longer immiscible. However, the complicated phase behavior posed one of the
major obstacles to the solution construction for this problem and no attempt was
made to solve the more complex problem.

Now with a better understanding of the physics underlying the multicomponent,
multiphase flow from the dramatic improvement of the analytical theory, a theory
can be constructed for displacements with temperature variation, where hydrocarbon
components as well as heat in the system may transfer between phases and be carried
downstream at variable local flow rates. In this study, the effects of hydrocarbon
phase behavior are considered, but water or steam phases are not included. The
temperature in the two-phase zone is variable depending on the heat concentration,

phase composition and saturation. Since temperature has a strong effect on the
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densities of the components, the effect of volume change that occurs when components
transfer between phases are included. By extending the analytical theory to include
temperature variation, we study the propagation of temperature fronts during gas

injection processes, and examine the interaction between the temperature fronts and
the composition waves.

1.3 Gas Injection for Enhanced Coal-Bed Methane

Recovery

The effect of adsorption and desorption of fluid components at reservoir rock surfaces
has been modeled in a global Riemann problem for single-component and multicompo-
nent polymer flooding by Johansen et al [15] [16], where the aqueous phase containing
polymer is assumed to be immiscible with the oleic phase. The specific adsorption
behavior of the polymer is represented by a Langmuir isotherm and briefly discussed
by Lake [21]. However, in the analytical theory of miscible gas injection, the effect
of adsorption and desorption has been neglected, although it can be important in
problems such as enhanced coalbed methane recovery (ECBM) by gas injection.
Coalbeds have large internal surface area and strong affinity for certain gas species
such as CH; and CO,. In coal-bed methane (CBM) reservoirs, most of the total gas
exists in an adsorbed state at liquid-like density. Only a small amount of the total
gas is in a free gas phase. Primary recovery using depressurization techniques induces
desorption of the CBM by lowering the overall pressure of the reservoir. Enhanced
recovery of coal-bed methane (ECBM) makes use of injection of a second gas to main-
tain overall reservoir pressure while lowering the partial pressure of the CBM in the
free gas. Injected gas also sweeps the desorbed gas through the CBM reservoir. Nitro-
gen is a natural choice as an injection gas because of its availability. Carbon dioxide,
on the other hand, is also promising because of the additional benefit of greenhouse
gas sequestration. When combusted, methane emits the least amount of CO» per
unit of energy released among all the fossil fuels. Therefore, synergy exists between

CO- sequestration and production of methane that leads to greater utilization of
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coal-bed resources for both their sequestration ability and energy content. The first
application of ECBM by CO, injection has been carried out in the San Juan Basin,
and proved to be technically feasible [35].

One important aspect of ECBM is the adsorption and desorption behavior of gas
mixtures on coalbeds. A significant amount of work has been invested on this issue
as it is related to coal mine safety. However, transport of the desorbed gas through
coalbeds has not been examined in detail. In this thesis, we extend the analytical
theory to consider ECBM problems by gas injection where the effects of adsorption
and desorption are not negligible. We study systems with up to three components
that have different affinities for coal-bed surfaces, and investigate the interaction of

the adsorption and desorption with the multicomponent flow through the porous
coalbed.

1.4 Summary

In this chapter, the development of the analytical theory of two-phase multicomponent
flow through porous media is reviewed. A brief introduction to the gas injection
problem with temperature variation and component adsorption/desorption is given.

In Chapter 2, the assumptions and simplifications used in this study are stated,
and a general mathematical model is established that describes the conservation of
mass and energy during the gas displacement process. That system of equations is
then converted to a general form of the eigenvalue problem. When the effect of volume
change is considered, the local flow velocity is variable and must be solved together
with the other dependent variables. Dindoruk [4] introduced a procedure that can
be applied here to decouple the local flow velocity from the rest of the unknown
variables. The eigenvalue problem with decoupled local flow velocity is derived, and
the physical constraints are used to eliminate invalid solutions.

In Chapter 3, the ECBM problem in a CHy/N2/CO; system is solved. An ex-
tended Langmuir isotherm is used to represent the adsorption and desorption behavior
of the gas components at the coal-bed surfaces. The eigenvalue problem is formulated

and studied. A series of example solutions is presented and discussed in detail, and
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the analytical solutions are confirmed by finite-difference simulations.

In Chapter 4, gas injection problems with temperature variation are solved for
single-component system where phase behavior is simplified significantly. Then in
Chapter 5, we provide a comprehensive study of solutions in binary systems.

Chapter 6 summarizes the results of this work and provides some insight into

possible future research to extend the analytical theory.



Chapter 2

Mathematical Model

In this chapter, we present the mathematical background for solving the gas injection
problems in 1D using the method of characteristics. The general assumptions and
physical constraints are stated. For continuous variation of the state variables such
as composition and temperature, the equations for conservation of mass and energy
that describe the flow are established and converted to an eigenvalue problem. Dis-
continuous variation of the state variables must obey the conservation of mass and

energy in an integral form across the discontinuity.

2.1 Assumptions and simplifications

The study of the gas injection problems using an analytical approach, to date, has
been subject to the following general restrictions:

- The theory is established for one-dimensional flow.
- No diffusion or dispersion is included.

- The physical properties of the porous medium, such as porosity and permeability
are homogeneous.

- The reservoir is initially at a uniform condition. Gas is injected at a constant
rate and composition.
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- For the purpose of evaluating phase behavior, pressure is assumed to be con-
stant.

- The mixtures are at local thermodynamic equilibrium during the gas injection
process.

When temperature is allowed to vary, energy transfer will take place as the phases
move. Under constant pressure, we are only concerned with enthalpy or heat, hence
in this work we use “heat” and “enthalpy” interchangeably. The flow of heat obeys a
conservation equation that has a form very similar to those of the individual compo-
nents. However, the flow of heat is not exactly the same as an individual component.
Besides being contained by all the components in the reservoir fluids. heat can be
absorbed and released by the reservoir rock matrix. When reservoir fluids flow, heat
can be carried downstream by all of the components. The overall energy is still con-
served, and there is only one heat balance equation. It is impossible to distinguish
the contributions from individual components or rock matrix when we compute the
heat concentration and heat flux.

In order for the method of characteristics to apply to a Riemann problem. it
is required that the initial reservoir temperature be uniformly distributed and the
injection fluid temperature be constant. Therefore, in this thesis, we will be solving
gas injection problems where the initial reservoir temperature differs from that of the
injection gas.

There are a few additional assumptions we must add to the gas injection problems
with temperature variation. First, we assume that the system reaches thermodynamic
equilibrium instantly. Secondly, heat transfer through conduction is neglected. The
transportation of heat occurs primarily due to convective flow. A comparison between
the heat transfer through convective flow and by conduction is presented in the next
section where the mass and energy balance equations are established.

Another physical effect to be included in the analytical theory is adsorption and
desorption. Similar to the exchange of heat between the flowing phases and the
reservoir rock, when adsorption and desorption effects are significant, reservoir fluid

components may partition between the flowing phases and the immobile reservoir
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rock surfaces. However, including the effect of adsorption and desorption only affects
the overall concentration of the components since it now includes contribution of the
adsorbed gas species on the reservoir rock surfaces. The material balance equations
that govern the fluid flow remain quasilinear in form. The adsorption and desorption
behavior is determined by the thermodynamic properties of the flowing mixtures, as

well as properties of the reservoir rock surfaces.

2.2 Conservation of mass and energy

In a system with n. components and n, phases, a general form of material balance

equation for each component in the multicomponent multiphase mixture is

| <& L - . ,

E [Z (D(L‘,‘jijj -+ (1 - ¢)a,} + Z V. (szijuj) = 0. 1= 1,n, (21)
j:l j:[

where ¢ is the porosity of the porous media, S; is saturation of phase j, p; is the

molar density of phase j, z;; is the mole fraction of component i in phase j, a; is the

adsorbed amount of gas component ¢ per unit volume of reservoir rock matrix. u; is

local flow velocity of phase j.

In a one dimensional problem, the overall concentrations and fractional flows are
defined as

p
Gi=o Z Iijijj -+ (1 - ¢)a,-, (.).2)
j=L
and ny
F.=u)_ p;zijfj, (2.3)
=t

where f; = u;/u is the volumetric fractional flow of phase j, u is the overall local flow
velocity.

Then, the material balance becomes

0G; OF;
+ —_—

- _ P = . 9.z
5 e 0, t=1,n. (2.4)
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Similar to the material balance, a general form for the energy balance is

!\D
[$1}
S’

o |2 np .

ey [vi:l ¢p;H;S; + (1 — 0)(p- Hy + paH,) | + Zl V - (pjH;ij) =0, (
= J=

where H; is the specific molar enthalpy of phase j, H; is the specific enthalpy of

the porous media, p, is the density of the porous media, p, is the overall density

of the adsorbed components, and H, is the overall specific enthalpy of the adsorbed

components.

In the one-dimensional problem, define an overall energy content and flux as

p
= ¢Z ijij + (1 - ¢)(err + paHa)a (2'6)
=l
and n
@:uijijJ-. (27)
=1
Then the energy balance becomes
or 09e
— 4+ —=0. 2.
% "oz 0 (28)

Substitution of the following dimensionless variables into Egs. 2.4 and 2.8.

x

= -, 29

£ = I (2.9)

= tingt 2.10

T oL (2.10)

pip = 2L, (2.11)
Pini

up = —, (2.12)
Uiny

pp = -, (2.13)
pim'

pep = =, (2.14)
Pini
H.

Hijp = J_ (2.15)
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H
H.p = H,-;’ (2.16)
H,
H,p = Hi:.-’ (2.17)
where
L = system length,
up = dimensionless total low velocity,
Uinj = injection velocity,
pini = density of the original fluid in the system,
pjp = dimensionless molar density of phase j,
p-p = dimensionless molar density of the rock.
pep = dimensionless molar density of adsorbed phase,
H;; = molar enthalpy of the original fluid in the system,
H;p = dimensionless molar enthalpy of phase j,
H,p = dimensionless molar enthalpy of the rock,
H,p = dimensionless molar enthalpy of the adsorbed phase,
£ = dimensionless distance,
T = dimensionless time,

yields the dimensionless form of the material balance and energy balance equations

0Gip . dFip 5
52+ 0 (2.18)
52+ o 0, (2.19)

where

np
Gip = ¢3_zipipS; + (L — ¢)aip, (2.20)
e



CHAPTER 2. MATHEMATICAL MODEL 13

Rp
Fp = upd zijpipfi (2.21)
j=t
Rp
Tp = ¢ pipH;pS;+ (1= ¢)(proHrp + papHap), (2.22)
e
tp
©p = upy, pipHipf; (2.23)
Jj=1

The heat transfer via conduction, when included, contributes the following amount
to the heat flux,

Uogr = —ar VT, (2.24)
where u,, is the rate of heat transfer by conduction per unit cross-sectional area,

ar is the thermal conductivity of the material. Hence the dimensionless form of the
energy conservation becomes

oCp  30p L &To _
a‘l' 3& Pg[[ 062 -

0. (2.25)

where Py = UinjLpiniHini/Tiniar is the Peclet number. [t describes a ratio of a
characteristic time for heat conduction to a characteristic time for convection. When
the Peclet number is large, the effect of thermal conduction is small, and convection
dominates. Normally, the initial reservoir fluid has a molar density at the order of
10~2 gmol/cc and a heat capacity at the magnitude of 10-3 Btu/gmol - °’K. The
typical thermal conductivity of a reservoir is in the order of 10 Btu/D - ft - °K, [31].
If we assume a one-dimensional model with a length of 1000 feet, and take a typical
injection rate of 1 ft/D and a typical temperature difference of 100 °K. then the
Peclet number is in the order of 100. This indicates that the heat flux by convective
flow overwhelms the heat flux from conduction. With heavier fluids, higher injection
rate, longer one-dimensional model and smaller temperature difference, the Peclet
number can grow significantly larger. Therefore, neglecting the heat flux by thermal
conduction is a reasonable assumption.

The Riemann problem requires uniform initial and constant boundary conditions
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at the injection end that can be expressed as

%(z,0) = zM, z>0, (2.26)
z(0,t) = z}n'l, z=0,i=1,---,n,, (2.27)
u(z,0) = 0, z >0, (2.28)
u(0,t) = 1, z =0, (2.29)
T(z,0) = TM, >0, (2.30)
T(0,t) = TM, r=0. (2.31)

In the following study of material and energy balances, we will use the dimension-
less form of the equations and drop the subscript “D”.

2.2.1 Eigenvalue problem and continuous solution

In a system with n. components, there are n. independent equations of material
balance for the n. components and one equation for the energy balance. Once we
can solve for the overall molar compositions, local flow velocity u and temperature T
the other unknowns such as saturations and equilibrium phase compositions can be
obtained through equilibrium calculations. There are n. — 1 unknown independent
overall molar compositions, one unknown local flow velocity u and one unknown
temperature 7. Therefore, we can choose a total number of these n. + L unknowns
that can be solved through the n. + 1 material and energy balance equations.

The system of equations for the material and energy balances, together with the
initial and injection conditions specified by two different composition and temperature
states at z = 0 and t = 0, constitute a Riemann problem that yields self-similar
solutions. Therefore, there exists a variable n = n(z,t) such that the solution to the

Riemann problem can be expressed in terms of 7 [24] [25], where

n=E§&/r. (2.32)

Because G;, F;, T’ and © all depend on the unknown overall molar composition z;
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for i = 1,n. — 1, the temperature T and local flow velocity u, we have

: [Re—1 2k
v - [E% %:7 "’ai%ﬂ > a3
T 5 EREN
% - ERn R nae  o®
where
g—z = -i- (2.37)
g‘Z‘ = -§ (2.38)

Substitution of Egs. 2.33. 2.34, 2.35, 2.36. 2.37 and 2.38 into Egs. 2.4 and 2.8
yields the following system of equations,

nel aG; aZk + a9G; -32 _—é
Lk_ 9z, On  OT on| T2
(<=l 9F; Oz 8F} T OF;dul|l
il —l = 9
+ Z 9z.0n 9T on | Bu an] = (2:39)
""‘ ar 9zx O aT| —¢§
=t azk an aT 811 T2
<=1 909z, 00T 0800u|1l
Z L 22 2= 2.:
+ Zazkan 3T3n+3ua'q]T 0 (2.40)

Egs. 2.39 and 2.40 can be written as an eigenvalue problem where §/7 is the

characteristic wave speed,

n=1% =T (2.41)

where U(n) is a vector of state variables.
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The material and energy balance equations become an eigenvalue problem in the
following matrix form,

[ o am ... _8F_ 9F 2R W'a_:q
an dz2 9zp.—1 arT ou dn
oF, oF: ... _0F 3R OF: dz
dz) dz2 zne-1 ar du dn
OFn. OFa, .. _OFn.  9Fn, 9Fn dT
6:1 a.-.—,» a:,.,.._l aT du dn
%@ o0 ... _8® 30 3o du
oz, 022 Fzne-1 arT du | L dn
[ ac, 8¢ ... _8G 3G o | du ]
23Y 922 O2ne-1 ar dn
aGa aGa v G aGa 0 dza
oz 022 Ozpc—-1 arT n
A ' ; - . (2.42)
3Gn. 9Gn, ... Gne 3Gac g T
oz 22 Ine-t arTr dn
o0 or ... oL o gf| &
L az dzn zne-t ar ] dn J

The flux terms for individual components and energy contain the local flow veloc-
ity. In order to separate the local flow velocity from the other dependent variables,

we introduce the normalized flux terms that are independent of the local flow velocity
as F and ©°,

np
a; = injpjfjx 1= 1l,n, (2.43)

Jj=1

ot d

rd

such that

F'i = uqy, 1= ]-y Y { - (2'45)
e = uj (2.46)
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Then Eq. 2.42 becomes

day da; ... da oy 171 ¢z
Uz, Yo: Bt Yar X dn
dan dar . daz daz dza
u az u 8za uazﬁc_l Uar @2 dn
da da Jda da dT
—1c, B ... —cfc —D e
u 9z u dza OZne -1 u arT Qn, dn
8,28 . 8,28 du
uazl ua:-_v Ozn. =1 ar 'B J L odn d
[ 8¢, aG ... _3G_  a8G, 1701 ¢z 1
dzy Jza a"'ﬂc-l aT dn
aG, Gy ... _8Ga_ 8Ga dza
zy 922 Bzne-1 arT dn
A ] ’ ’ ’ .
3Gn, 3G ... 8Gn. Cumc T
az E dzne—1 ar dn
ar  or ... _ac_ 9L ||
| 3; 9z Fznooy  OT L

17

Following a procedure similar to that introduced by Dindoruk (4] for decoupling
the local flow velocity yields

where

&)
I

my
'~]
il
N

[F] -
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(2.48)
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dz; P = -
o (g s 259
dT >
2;7 J = N,
A
o= 2 (2.54)
u

Eq. 2.48 has a sub-matrix of order n. that yields an eigenvalue problem of the
form

[F-\Glé=0. (2.55)

Eq. 2.55 is completely independent of the local flow velocity because the velocity
term is decoupled. The corresponding eigenvectors to the eigenvalues in Eq. 2.55
indicate the direction of the solution paths in the augmented composition space.
Once the eigenvalues and the corresponding eigenvectors are solved from Eq. 2.55.

the local flow velocity can be solved by integrating the last scalar equation of Eq. 2.48,
t.e.,
(Ff—xGMe= —%3—: (2.56)
Eq. 2.56 must be integrated as a path is traced in the composition space. Taking
small integration steps along the path, and assuming constant product of (f‘ T A‘éT)
and €, we have
U = Ug exp [—s (F"T - A'éT) é'] (2.57)

It must be pointed out that the last eigenvalue in Eq. 2.48 corresponds to the local
flow velocity and has an infinite value. This tells us that, unlike the composition and
temperature waves, any variation in the local flow velocity will propagate downstream
instantly in the one-dimensional model.

2.3 Continuous and discontinuous solutions

In the 1D model. the solution to the Riemann problem consists of infinite number of
states that are described by a set of dependent variables such as the molar composi-
tions, temperature and local flow velocity. In an abstract space created by coordinates

such as the molar compositions and temperature that will be called a “composition
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space”, these states vary from the injection condition at upstream to the initial condi-
tion at downstream and form a path that will be called “solution path”. In a solution
of the Riemann problem, each of these states propagates downstream at a fixed veloc-
ity, indicated by the eigenvalues of the eigenvalue problem, while the corresponding
eigenvectors indicate the direction of the solution path in the composition space.

As can be seen from Eqgs. 2.55 and 2.56, at any point in the composition space,
there will exist n. eigenvalues and eigenvectors. Each pair of the eigenvalues and
corresponding eigenvectors gives a valid wave velocity and solution path direction.
Taking a rarefaction solution along any of these solution paths satisfies Egs. 2.55
and 2.56. However, when we trace the solution paths from the upstream condition to
downstream, the corresponding wave velocity may not decrease monotonically. When
this happens, the composition or temperature waves upstream may travel faster than
those downstream. As a result, we may have multiple values for the state variables
at the same time and same location. This behavior is non-physical and is a violation
of the velocity rule that requires that fast traveling waves stay downstream of the
slower traveling waves. When the velocity rule is violated, a discontinuous solution,
called a “shock”, must be used to replace the rarefaction wave solution.

Across a shock, the material balance must be satisfied as well. This is the Rankine-

Hugoniot condition. For each of the component, an integral balance across the shock

yields
_Fp-F¢

Am - E}‘__?:iy 1= 1, ., ne, (2'58)

where the superscripts “u” and *d” represent upstream and downstream conditions
of the shock.

With variable temperature, energy is also conserved across the shock. Hence, the

Rankine-Hugoniot conditions for mass balance must be augmented to accommodate
the energy balance,

Qu _ed

M=o

= Am, i=1,.,n. (2.59)

In order for a shock solution to be stable, it must satisfy an entropy condition. A
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shock may not be stable when the wave velocity at its immediate upstream side is
lower than the shock velocity and that at the immediate downstream side is higher.
An unstable shock not satisfying the entropy condition would collapse when given
a small amount of perturbation. A stable shock, on the other hand, is a shock
that moves faster than the waves immediately downstream and slower than those
immediately upstream. Hence given a small amount of perturbation the shock is
capable of sharpening itself back into a shock instead of spreading out and collapsing.

Besides the segments of continuous and discontinuous solutions, there also exist
constant states in solutions to Riemann problems. In constant states, the dependent
variables remain constant and propagate downstream together with the continuous
and discontinuous solution segments.

Overall, the continuous solution, discontinuous solution and constant state seg-
ments for a complete solution to a Riemann problem must be arranged in such a way
that the velocity rule is satisfied. When there is a slight change in the initial or injec-
tion condition, the solution structure must also change continuously corresponding
to the change in input information.

2.4 Solution construction procedure

With the concepts of continuous and discontinuous solutions, we summarize the so-
lution construction procedure as follows:

- Starting from the eigenvalue problem based on material balance and energy
balance equations, find all possible continuous solution path combinations in

the composition space that connect the initial and injection conditions.

- Apply the velocity rule on the solution segments, replace the continuous solution
segments that violate the velocity rule with shock solutions. When constructing
shock solutions, apply the entropy condition to find stable shocks. Overall. the

whole solution structure must satisfy a continuity condition.

- Apply the velocity rule, entropy condition, and continuity condition recursively
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and iteratively until all the non-physical solutions are excluded and a unique

solution is found.

In the chapters that follow, these procedure are applied to the problem of coal-bed

methane recovery and to the problem of gas injection with temperature variation.



Chapter 3

Enhanced Coal Bed Methane

Recovery

3.1 Introduction

In this chapter, we concentrate on the effects of adsorption and desorption that are
most evident in problems such as ECBM by gas injection. The temperature is assumed
to remain constant during the gas displacement processes.

The ECBM problem is of interest because of the complex adsorption and desorp-
tion behavior, coupled with the phase equilibrium of the gas mixtures, and multiphase
flow through the porous coal bed. Arri et al. [1] measured the adsorption isotherms
using moist coal samples from the Fruitland coal seam of the San Juan Basin of
Colorado. Measurements were performed on both pure gas components and binary
mixtures, and were compared favorably with the prediction of the extended Langmuir
isotherm at relatively low pressure. A black-oil simulator was adapted to accommo-
date the adsorption and desorption behavior of the gas components and model the
CBM production. Up to three phases were introduced in the system, where the oil
phase was set to be immobile and used to represent the coal. It adsorbed both gas
components and moisture. The aqueous phase contained only water. The gas phase
could contain both water and gas components. A new phase equilibrium model was

developed and put in the simulator. The modified simulator was tested for primary

22
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recovery of a single sorbing component and N,-ECBM.

In this study, we focus on the interaction of CHy, CO,, and N, with the method
of characteristics approach. We neglect the mobile liquid phase, and use an extended
Langmuir isotherm to approximate the adsorption and desorption of the gas com-
ponents at the coalbed surfaces. When components transfer between flowing phases
and coalbed surfaces, the effect of volume change is considered. However, we neglect
the volume change of the adsorbed components at the coalbed surface. The thermo-

dynamic behavior of the gas mixtures is represented by the Peng-Robinson equation
of state.

3.2 Langmuir isotherm for adsorption and desorp-
tion

Most of the studies of multicomponent gas sorption on coal are limited to experimen-
tal work, where measurements of the adsorption isotherms were performed on dry coal
and mostly at low pressures (32|, [33]. As methane (CH,), carbon-dioxide (CO2) and
nitrogen (V,) are often the primary components in ECBM by gas injection, measure-
ments were made on mixtures of these components. Rather than explore the effect
of mixture composition on the adsorption behavior, most of the experimental work
was carried out on mixtures with fixed molar composition but varying pressure. Hys-
teresis was observed when adsorption (pressure increasing) and desorption (pressure
decreasing) isotherms are measured [2]. On the other hand, in a constant composition
expansion and constant volume depletion sorption experiment by Chaback et al. (3],
it was reported that the adsorption and desorption process is reversible and can be
effectively described by extended Langmuir isotherm.

When applying the method of characteristics to the ECBM problem, we assume
that the pressure remains constant for the purpose of evaluating the adsorption equi-
librium. Therefore, adsorption and desorption occur when the molar composition

of the flowing phases varies, resulting in variation in partial pressure of a given gas
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species. We assume the adsorption and desorption process is reversible, and is de-
scribed by a single set of isotherm constants.
Markham et al. [26] provided an extended Langmuir isotherm for a multicompo-

nent mixture. It describes the fractional surface coverage of individual components,

9,‘, as

_ B;p;
1+ 372 Bjp;
where B; is a Langmuir constant at given temperature for adsorption of a pure species,

and p; is the partial pressure of component i that is approximated by the ideal gas
relation as

©;

(3.1)

pi = zip, (3.2)

where z; is the mole fraction of species i. Hence, the molar concentration of the

adsorbed components, a; depends only on the molar composition of the free gas

phase according to
o = PiPVmiBipi
" 1+ X5 B

where p, is the density of the coalbed, p; is the molar density of component i at

(3.3)

standard condition, and V,,; is a Langmuir constant for component ¢ at given tem-
perature.

The extended Langmuir isotherm constants based on the experiments of Greaves
et al. [9] on adsorption and desorption of pure C Hy, pure CO>, and mixtures of the
two will be used in this work. Figure 3.1 illustrates the results of those experiments
and the model fits. The Langmuir isotherm constants for pure N, are not readily
available. However, since N> adsorbs less strongly to coal than either CH, or COs, it
is reasonable to assume that the extended Langmuir isotherm constants are about half
as those of CO.. The results reported below will show that the competition among
different gas species for coalbed surface is determined by the order of the affinity of
the gas components, and hence the behavior of displacement can be investigated even
if detailed V> data are not available.
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Figure 3.1: Experimental data for adsorption/desorption of pure CH; and CO», and
fitting with extended Langmuir isotherm.

3.3 Mathematical Basis

Since we only consider single-phase flow and assume constant temperature, the mo-
lar concentration and flux terms for the material balance of individual components
simplify to

Ci = ¢pzi + (1 — d)as, (3.4)

and

Fi = uo; = upz;. (3.3)

Instead of using the energy balance equation to perform the decoupling of the
local flow velocity, we use the material balance equation for the last component.

Accordingly, the sub-matrices for solving the normalized eigenvalue are evaluated as

_ Ba,- (s ] Banc
[F] - azJ Ctn, aZj ) (3.6)
aC; _ ﬁ_aCnc

0z; an, 0z’

Gl = (3.7)
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where the subscripts ¢ and j vary from 1 to n. — 1.

3.4 Solution construction

14+ e, BkPka—Zj - (1+ T2, Bepe)?

|

(3.8)
(3.9)
(3.10)

(3.11)

(3.12)

Construction of the analytical solution for ECBM with gas injection varies for systems

with different numbers of components. Solution in a single-component system is

trivial because the injected gas and initial gas are at dynamic equilibrium, and hence

the local flow velocity remains constant, that is, identical to the injection rate. In

this section, we will first discuss solutions in binary system, and then continue to
ternary systems. Specifically, three components are used, CH, CO,, and V2. The
thermodynamic properties of these components are summarized in Table 3.1. If not

stated otherwise, the pressure is 1600 psi, and temperature 160 °F for all calculations.

Table 3.1: The thermodynamic properties of gas components in the example solutions.

P, T, M, Q Vi B K
(atm) | (°F) | (g/gmol) (SCF/ton) | (psi™!) | CHy | CO2 | Na
CH, | 667.2 | -116.6 | 16.043 | 0.008 444.0 0.0034 | 0.0 | 0.103 | 0.031
CO, | 1069.9 | 87.9 44.01 0.225 707.5 0.0066 | 0.103 | 0.0 0.0
N, 493.0 | -232.4 28.01 0.04 2220 0.0017 | 0.031| 0.0 0.0
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3.4.1 Binary flow

Consider first the continuous solution. The composition space is the binary axis,
because only one of the molar compositions varies independently. The problem for

the normalized eigenvalue and the corresponding eigenvector is of first order, and
yields

¢p
A= , (3.13)
oo+ (1 - 0) (228 - 252)
and p
== |22 =
€= [377] . (3.14)

Substitution of the normalized eigenvalue and eigenvector to the local flow velocity
problem yields

1du 19p 1 19p 1 L1l—-91 0a2>] .
tavw 119 ) _ (222 __,.2 "¢ : 3.1
’ [(P 0z, 22) (Pazl 22 ® pz20z (3.15)

In a continuous solution, the composition varies continuously along the binary axis
from the injection gas composition to the initial composition. At each intermediate
state, the molar composition is associated with a normalized eigenvalue and local flow
velocity. If the wave velocity increases monotonically as the solution path is traced
from the injection condition upstream to the initial condition downstream, then the
velocity rule is satisfied. The solution is a continuous variation from the injection
composition to the initial composition.

On the other hand, if the continuous solution violates the velocity rule, a shock
solution is needed. If the molar compositions on the upstream and downstream sides
of the shock are both known, and the injection gas flow rate is a given constant, then
the only unknowns are the local flow velocity on the downstream side of the shock u4

and the shock velocity A. Solving the Rankine-Hugoniot conditions

Fe-F¢ _Fp—Ff

A=CvciTCr—cd

(3.16)
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yields
u(C% — C%) — a¥(C* - C¥)
ud=uual( 2 2 2\ L 3.17
af(Cs = Cf) —ad(Ct — C9) (3.17)
d
" A =t o40d —otod (3.18)
T af(CE - C) —as(Cr - CY)’ '

We use the CH, — CO, system to demonstrate the solution construction pro-
cedure. Figure 3.2 illustrates the variation of the normalized eigenvalue, local flow
velocity as the molar composition varies continuously. The propagation velocity of a
composition is the product of the normalized eigenvalue and the local flow velocity.
As the CO- concentration decreases continuously, both the normalized eigenvalue and
local flow velocity decrease. Therefore, if a binary mixture with high CO, content is
injected at a unit rate into a coalbed initially saturated with a binary mixture rich
in C H,, the propagation velocity of the composition wave decreases as C H, concen-
tration increases. This variation violates the velocity rule. A shock solution must
be constructed instead as indicated by the Rankine-Hugoniot condition. Figure 3.3
shows the single shock profile for an example solution in the binary C H,-CO. system,
where the injection gas consists of 95% CO, and 5% C H,, and the initial gas 3% CO»
and 97% CH,.

In the CH, — N, system, when the N, composition increase continuously. its
corresponding normalized eigenvalue and local flow velocity decrease monotonically.
The resulting propagation velocity of the composition is shown in Fig. 3.4. When a
No-rich mixture is injected to displace an initial mixture rich in C Hy, the propagation
velocity increases as the composition of NV, decreases continuously from upstream to
downstream. Therefore, the solution is a continuous variation of molar composition
from upstream to downstream. The solution profiles for the molar compositions,
molar density and adsorption are summarized in Fig. 3.5.

Similar analysis can be applied to the CO>-N» system. The the variation of
eigenvalues and local flow velocity with the continuous variation of molar composition
can be seen in Fig. 3.6. In an example solution, when a mixture rich in N, is injected
to displace an initial mixture with high CO, concentration, there exists a continuous
solution that satisfies the velocity rule, as shown in Fig. 3.7.
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In general, it can be observed that a shock solution occurs when a gas rich in
a component with higher affinity for coal is injected to displace a coalbed gas that
is rich in a component that adsorbs less strongly. Continuous solutions result dur-
ing injection of gas rich in a weakly adsorbing component, N, displacing CO, for
example.

3.4.2 Ternary flow

Consider a mixture of CH,, CO., and N, as an example for systems with three
components. The composition space is described by a ternary diagram that represents
the molar compositions. In order to construct a continuous solution, the 2 by 2 sub-

matrices in Eq. 3.6 through Eq. 3.9 that determine the normalized eigenvalues are
evaluated as

Fu = p (1 + ?) : (3.19)
<3
Fi, = pﬂ, (3.20)
23
Fn = p2, (3.21)
23
Fas = p (1 + fz) : (3.22)
23
b4 1-— ¢ aal 21 803
= — - — , 3.23
Gl[ p (1 + 23) + (D (821 23 azl ( )
2y 1-¢ [0a; zy Oas
s = p— -2 . 3.24
Gl- pZ3 + (P (022 23 aZZ) ( )
29 1- (P aao 29 303
2 = — - - — y 3.25
G"l pz;; + ¢ (821 23 azl ( )
r43 ¢ aag 29 aa3
9g = — - — . 3.26
G - p (1 Z3) (622 Z3 622) ( )
. [ 190 _ L
FT = | 2% 21, (3.27)
L poza z3
[ 18 i 1-¢ 1 da
ar - ;5%‘5'“7?#], (3.28)
18p _ L 4 1=¢ L dag
L pdz2 = ¢ pz3 0z
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Figure 3.2: Variation of normalized eigenvalue, local flow velocity and characteristic
wave velocity along the CH; — CO, binary axis.
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At each point in the ternary composition space, there are two normalized eigen-
values that can be found as the two roots of

MGG —G12Ga) + A7 (F12Ga + F21Gr1a— F11G o — FnGuy ) + (Fii Foa — Fla Fay) = 0,

(3.29)
dz .
s @ Yo Fr-XGu (3.30)
4—;—# —Fu -+ /\‘Gu

There are two sets of paths, each corresponding to one of the two normalized
eigenvalues and its corresponding eigenvector. The two sets of paths form a mesh-
like pattern, as shown in Fig. 3.8. The paths are not necessarily straight lines but
a result from an integration in the composition space along directions given by the
eigenvectors. To illustrate the path-mapping procedure, we start from a point A in
the ternary composition space as the upstream condition (Fig. 3.9), and assume a local
flow velocity at this point. The eigenvalue problem yields two normalized eigenvalues
with different magnitudes, each with its own eigenvector. Following the direction
indicated by the eigenvector corresponding to the larger eigenvalue, we take a small
step towards the region with higher CH, concentration, and solve the eigenvalue
problem for the normalized eigenvalue, its corresponding eigenvector, and the local
flow velocity at the new composition. The process is repeated until we arrive at the
boundary of the ternary composition space at C. The variation of the composition,
normalized eigenvalue, and local flow velocity is recorded along the path. Path AC
is sloped upward to the right, and the wave velocity increases monotonically as the
path is traced towards the CH,-rich region, as Fig. 3.9 shows. Similarly, following
path AB that slopes upward to the left, given by the eigenvector corresponding to
the smaller eigenvalue, the wave velocity decreases as the path is traced towards the
region with higher CH, content (Fig. 3.9). We refer to the paths sloping upward to
the left as “slow paths”, and those sloping upward to the right as “fast paths”.

Now consider solutions for ECBM processes where the initial gases are richer
in CH, than the injected gases. Given initial and injection gas compositions, and a
fixed injection rate, the displacement is solved by finding a solution path, consisting of

either continuous segments or shock segments, that connects the injection and initial
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Figure 3.8: Continuous solution paths for CH; — CO> — N, ternary system.
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gas compositions in the ternary composition space. Each intermediate stage along
the solution path represents an intermediate molar composition with a normalized
eigenvalue and local flow velocity. The product of the two is the wave velocity at
which the composition wave propagates downstream. Depending on the injected gas
composition, the solutions can be classified into three types.

It is more likely that COs-rich gases will be used to displace C H;-rich gases than
the reverse. Figure 3.10 shows the most commonly seen configuration of initial and
injection compositions. We name this scenario Type [. Two sets of paths connect the
initial composition, represented by point O in the ternary composition space, and
injection composition, represented by point I. A continuous solution path connecting
the injection and initial compositions could follow the path I —+ A — O or path I —
B — O. The path I = B — O requires a switch from a fast path to a slow path at
point B as the composition path is traced from upstream to downstream. This switch
violates the velocity rule. Hence, this path configuration is unphysical and must be
excluded. On the other hand, following path IA with a switch to path AO requires a
switch from a slower path upstream to a fast path downstream, which does not violate
the velocity rule. However, as the slow path is traced from I to A, the wave velocity
decreases in the downstream direction. This is a violation of the velocity rule, and
hence this composition variation must be replaced by a shock solution. The shock
solution satisfies the material balances in an integral form, and does not necessarily

follow the path for a continuous solution,

Fp-F _F-F _F-Ff

MormciT oo Tor-of

(3.31)

All the variables at the upstream side of the shock are known. The molar compo-
sition and local flow velocity can be obtained from the Rankine-Hugoniot condition,
Eq. 3.31. The shock landing point is fully determined and must lie on the fast path
through the initial composition at point C. Therefore, the final solution consists of
a shock between I and C, a constant state at C, and a continuous variation CO,
Fig. 3.10.

As the injection composition is moved closer to the fast path through the initial
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continuous variation CO.
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composition, the upstream shock segment becomes shorter. In the limit when the
injection composition falls on the fast path through O, the upstream shock segment
disappears. The solution is a continuous wave between the initial and injection com-
positions. On the other hand, when the injection composition moves towards the
CO- vertex, the shock landing point C moves closer to the initial composition O,
with a shorter downstream continuous wave segment. The limiting case takes place
when point C and O overlap, resulting in complete disappearance of the downstream
continuous wave. The solution is a single shock between the initial and injection
compositions.

The second type of solution (Type II) occurs when the injection composition moves
to the left of the fast path through the initial composition, as shown in Fig. 3.11.
Similar analysis using the velocity rule indicates that the solution must be composed
of an upstream continuous wave along the slow path from injection composition I to
point A, where there is a switch to the fast path and a continuous variation from A
to initial composition O.

The third type of solution (Type III) occurs when the shock landing point C goes
beyond point O, as Fig. 3.12 shows. Tracing a path from C back to O violates the
velocity rule, and hence a shock is required between C and O. The shock solution does
not necessarily occur along paths for continuous solutions. Therefore, a shock point

C must be found such that shocks CO and CI both satisfy the Rankine-Hugoniot
condition.

3.4.3 1D Finite-Difference Simulation

A one-dimensional finite-difference scheme was used to simulate the ECBM process
by gas injection and to confirm the analytical solutions. With single-point upstream
weighting, the finite-difference form of the material balance equation is

At [

C?,:l =Clx — Az Fiy — FZ,',;_I] . (3.32)

At each time step, a calculation similar to a multiphase equilibrium calculation

was performed. Given an overall molar composition in a cell, the components were
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distributed between the pore space as free gas and coalbed as adsorbed gas with
the equilibrium compositions determined by the extended Langmuir isotherm for
adsorption. The local flow velocity at each cell is computed corresponding to the

variation in molar density due to mixing of the components.

3.4.4 Example Solutions

The analytical solution procedure was applied to study injection of N»/CO> mixtures
into coalbeds. The initial gas composition is fixed as 96% C Hy, 3% CO> and 1% Na,
and the injection gases are binary mixtures composed of CO; and N». Five injection
compositions were considered containing 0%, 25%, 50%, 75% and 100% mole fraction
of CO,, with the remainder being N>. These compositions yield analytical solutions
of the three different types. For each of these sample cases, a LD finite-difference
simulation was run to confirm the analytical solutions. The number of grid blocks
was 5000, and the Courant number (At/Axz) was fixed at 0.1.

The solution paths for the examples are summarized in Fig. 3.13. The arrival times
of the leading edge and trailing shocks for the example solutions are summarized in
Table 3.2. The recovery curves of CH, are shown in Fig. 3.14.

A Type II solution results when the injection gas consists of pure N, as Fig. 3.15
shows. The solution includes an upstream continuous variation from the injection gas
composition to the path switch point A, and a downstream continuous wave along the
fast path from A to the initial composition O. The composition waves arrive at the

producing end at a time given by 1/A or 1/A, where the producing end corresponds to

Table 3.2: Summary of breakthrough times and complete recovery of the initial CBM.

Injection Gas PVl PVI

CO2 (%) | N> (%) | at breakthrough | at complete recovery
1 0 100 091 2.08
2 25 (6] 0.99 1.90
3 50 20 1.08 1.75
4 75 25 1.15 1.60
5] 100 0 1.16 1.43
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Figure 3.13: Solution paths for example solutions. The initial composition is fixed at
96% CH4, 3% CO'_), and 1% .’Vf_).
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Figure 3.14: Total recovery of C H, for the example solutions with different injection
gas compositions.
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a location £ = 1 in the one-dimensional model, and A and A stand for the propagation
velocity of continuous and discontinuous variations respectively. The solution profile
in Fig. 3.15 indicates that at the producing end the CH, concentration starts to
decline after about 0.91 pore volume (PV) has been injected, corresponding to the
arrival of the leading front of the continuous variation segment AO. When the end of
the upstream segment of continuous waves arrives at about 2.08 PV injected, all of the
CH, originally in place is completely recovered. The values of the compositions and
propagation velocities at the key points in the solution profile are given in Table. 3.3.

A Type I solution occurs when the injection gas consists of 75% N, and 25%
COa,, as shown in Fig. 3.16. The compositions and propagation velocities at the key
points in the solution profile are summarized in Table. 3.4. An upstream shock occurs
along the CO, — N, axis and ends at point A. At point A, a constant state exists.
The solution then switches to the fast path and follows a continuous variation to the
initial composition O. Due to the strongest affinity of CO for the coal surfaces among
the three components, most of the variation in the composition of CO; occurs at the
upstream edge of the variation zone where CO, adsorbs strongly and sweeps out both
N, and CHj,, forming a trailing step change. At the downstream end, the interaction
of N, and C H, adsorption/desorption is evidenced by a continuous variation because
the injection gas has a higher concentration of N, that adsorbs less strongly than
CH,, a major component of the initial gas. A bank of N, forms between the leading
continuous variation and trailing step change, (see Fig. 3.16). At the producing end,
the CH, concentration starts to decline after 0.99 PV has been injected. After 1.90

Table 3.3: Analytical solution for ECBM in C Hy — CO, — N, system, where the initial
gas consists of 96% CH,, 3% CO, and 1% N», and the injection gas 100% Na.
T Composition Wave

Composition | (Mole Fraction) | Velocity
Label CH, | CO, | N, (A)
L 0.0 0.0 | 1.0 | 0.0-0.481
A 0.0 | 0.02 | 0.98 0.487
0] 0.96 | 0.03 | 0.01 1.103
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Figure 3.15: Solution profile for example solution with an injection gas of 100% Na.
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PV has been injected, the C Hj originally in place is recovered completely.

The solution structure remains rather similar for the next two examples as the
injection gas consists 50% N, and 50% CO,, and 25% N, and 75% CO,, except that
when 50% N, and 50% CO. is used as injection gas, the trailing shock occurs along
the N, — CO, axis, whereas the trailing shock goes to the interior of the ternary
composition space for the later case. The solution profiles for these two examples are
presented in Fig. 3.17 and Fig. 3.18. The compositions and propagation velocities
at the key points are summarized in Table. 3.5 and Table. 3.6. It can be seen that
with 25% N, and 75% CO, in the injection gas, the leading front is slower, and
the trailing shock becomes faster, resulting in a more compressed solution profile. A
general observation is that for Type I solutions, as the CO, fraction in the injection
gas increases, the trailing shock is “stronger”, i.e., spans greater difference in gas
composition, and the leading continuous variation becomes “weaker”. A stronger
shock propagates faster, but has lower local flow velocity on the downstream side.
This is the result of volume change as CO, adsorbs. The loss of CO, volume is
greater than the volume of the CH, released from the coalbed surfaces. Along a
downstream continuous variation, the local flow velocity increases, but less strongly
with a weaker continuous variation. Therefore, the wave velocity furthest downstream
is a combined effect of the trailing shock and the leading continuous variation. As
the CO, content in the injection gas increases, the trailing shock dominates, and the

leading continuous variation becomes less significant, resulting in a slower moving

Table 3.4: Analytical solution for ECBM in C Hy — CO; — N, system, where the initial

gas consists of 96% CH,, 3% CO, and 1% N, and the injection gas 75% N and 25%
COs.

Composition Wave
Composition | (Mole Fraction) Velocity
Label CH4 CO'_) lVg (/\)
I, 0.0 [ 0.25 { 0.75 | 0.0-0.527
A 0.0 | 0.02 | 0.98 | 0.527-0.685
(0] 0.96 | 0.03 | 0.01 1.007
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Figure 3.16: Solution profile for example solution with an injection gas of 25% CO,
and 75% Ng.
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Table 3.5: Analytical solution for ECBM in C Hy — CO, — N, system, where the initial

gas consists of 96% C H,, 3% CO- and 1% N,, and the injection gas 50% N> and 50%
CO..

Composition Wave
Composition | (Mole Fraction) Velocity
Label CH4 C02 Ng (/\)
I3 0.0 | 0.50 { 0.50 | 0.0-0.572
A 0.0 | 0.02 | 0.98 | 0.572-0.632
o 0.96 | 0.03 | 0.01 0.929

Table 3.6: Analytical solution for ECBM in C Hy— CO, — N, system, where the initial

gas consists of 96% CH,, 3% CO, and 1% N>, and the injection gas 25% N2 and 75%
COs.

Composition Wave
Composition | (Mole Fraction) Velocity
Label CH4 COg l\rg (/\)
I 0.0 | 0.75 | 0.25 | 0.0-0.626
B 0.26 | 0.02 | 0.72 | 0.626-0.661
o 0.96 | 0.03 | 0.01 0.868

leading front and faster moving trailing shock, (see Fig. 3.18).

In the last example, an injection gas of pure CO; is used. The solution is of Type
III, as shown in Fig. 3.19. It consists of two discontinuous waves. Starting from
the injection gas IS5, the trailing shock occurs along the CH,; — CO, axis, ending at
point C. After a constant state at C, there is a downstream shock, and a jump to
the initial composition O. The leading shock is relatively insignificant compared to
the trailing shock. It arrives at the exit after 1.16 PV has been injected, followed by
a short period of production of CH; — CO, binary mixture that has slightly higher
CH, content than the initial gas. The CHj originally in place is completely recovered
when the trailing shock arrives at 1.42 PV.

Since the gases are injected at a fixed volumetric rate, for a solution of Type II,
the local flow velocity increases along the upstream continuous path and also the
downstream continuous path, resulting in a high local flow velocity at the leading
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Figure 3.17: Solution profile for example solution with an injection gas of 50% CO-
and 50% N,.
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Figure 3.18: Solution profile for example solution with an injection gas of 75% CO,
and 25% Ng.
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Figure 3.19: Solution profile for example solution with an injection gas of pure COa.
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front. Hence, the recovery curve of the initial gas is steeper. This is consistent with
current ECBM practice where N, is the injectant of choice because enhanced CH,
production occurs sooner. By the time the leading front arrives at the producing
end, and the CH, composition starts declining, most of the CH, originally in place
has been recovered. The remaining CH, is produced as its concentration in the
produced gas declines continuously. Hence, it takes an extended period to produce
the remaining CH, and also requires separation of the CH, from the produced gas.

In a Type [ solution, the local flow velocity shows a dramatic decline across the
upstream shock. Although the flow velocity increases along the fast path towards
downstream, the local flow velocity at the leading front is lower than it is in a Type
II solution. Within this solution type, the higher CO, composition in the injection
gas results in a stronger upstream shock, a weaker downstream continuous variation.
a slower leading front, and a faster upstream shock. Therefore, if there is more CO,
in the injection gas, the recovery of gas is initially slower, but the total recovery of
the C H, originally in place occurs earlier. Separation of C H, from the produced gas
is still required because the C H, composition keeps declining for an extended period
until the upstream shock arrives.

When an injection gas very rich in CO, is used, a Type III solution occurs. The
upstream shock spans a large difference of concentration. The downstream shock, on
the other hand, is relatively insignificant, as can be seen from the sample solution on
Fig. 3.13. There is a fast moving upstream shock but low local flow velocity at the

leading front, resulting in a lower production rate of the initial gas, compared to the

Table 3.7: Analytical solution for ECBM in CHy —CO, — N, system, where the initial
gas consists of 96% CHy, 3% CO; and 1% N, and the injection gas 100% CO,.

Composition Wave |
Composition | (Mole Fraction) Velocity
Label CH4 COg lVQ ()\)
Is 00 | 1.0 | 0.0 | 0.0-0.705
C 0.97 | 0.03 | 0.0 | 0.705-0.852
0] 0.96 | 0.03 | 0.01 0.852
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Type I and Type II examples. The duration of initial gas production is longer, and
it takes less time to recover the remaining C H; originally in place.

3.4.5 Effect of Numerical Dispersion

The analytical solutions for the examples were confirmed with solutions obtained
from finite-difference simulation. Figure 3.20 shows a comparison of the analytical
and finite-difference solutions for the example where pure NV, is used as injection gas.
The number of grid blocks used in the finite-difference simulation is 5000. Very good
agreement between the two solutions is observed with only small difference due to
numerical dispersion in the finite-difference solution. Similar agreement between the
analytical and numerical solutions was obtained for the remaining examples.

For the example solution where the initial mixture consists of 75% CO, and 25%
CO., a series of finite-difference simulations was carried out. The solution paths are
summarized in Fig. 3.21. When an inadequate number of grid blocks is used, a strong
effect of numerical dispersion is observed that forces the solution paths to differ from
the dispersion-free analytical solution and approach a dilution lie that connects the
initial and injection mixture compositions. In order to have a satisfactory match
with the analytical solution, the number of grid blocks must be as high as 5000 that
requires a large amount of computational time. The convergence of the numerical

solution to the analytical solution confirms the correctness of the analytical solution.

3.5 Summary

We describe an analytical theory of three-component flow for ECBM processes where
adsorption and desorption of gas components on coal play important roles. The
theory and examples presented lead to the following conclusions:

1. In binary systems, shock solutions occur when a more strongly adsorbing gas
mixture is injected. Continuous variation occurs when the injection gas is less
strongly adsorbing than the initial gases.
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Figure 3.20: Comparison of the analytical solution profiles with finite-difference sim-
ulation results. Injection gas consists of pure Na.
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Figure 3.21: A study of the effect of numerical dispersion by a series of finite-difference
simulations with various numbers of grid blocks.
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2. In ternary systems, the composition of injection gas has small effect on the
amount of time to recover all CH; originally in place. However, injection gas
composition has significant effect on the produced gas composition and the time
to breakthrough of the injection gas. An injection gas rich in NV, yields a greater
initial recovery rate, but earlier breakthrough of injected gas. Thus, NV, must
be separated from produced gas for a substantial period of time. On the other

hand, an injection gas rich in CO, yields recovery of C Hy-rich gas for a greater
period of time.



Chapter 4

Temperature Variation in

One-Component Flow

In this chapter we study gas injection problems with temperature variation using
the method of characteristics. The mathematical model and general approach are
summarized in Chapter 2. The adsorption and desorption of gas components at
rock surfaces are not considered here. The phase equilibrium behavior is represented
by the Peng-Robinson equation of state [30]. A few components are chosen as the
sample systems where solutions are sought, and the parameters used for computing
the thermodynamic properties with Peng-Robinson equation of state are listed in
Table 4.1. In order to calculate the enthalpy of pure components at ideal state,
Passut and Danner’s correlation [29} is used,

H* = A+ BT +CT?+ DT®+ ET* + FT®, (4.1)

where A, B, C, D, E, and F are derived coefficients, with the enthalpy in Btu/lb
and the temperature in °R. For the heat capacity, (C, = dH"/dT):

C,=B+2CT + 3DT? + 4ET3 +5FT*. (4.2)

The coefficients for enthalpy calculation using this correlation in the examples

are summarized in Table 4.2. The porosity, density and heat capacity of the porous

59
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medium are assumed to be constant and listed in Table 4.3.

However, for single-component systems with temperature variation, the eigenvalue
problem established for multi-component systems is not applicable. In this chapter,
we consider the special case of single-component systems.

When a gas is injected at a temperature different from that of the original fluids
in the reservoir, mass transfer, as well as heat transfer, occurs. While the injected
gas participates in the multicomponent multiphase flow through the porous medium,
the temperature of the injected component, as well as that of the original fluids and
the porous medium varies due to the heat exchange between the fluids and porous
medium. Without losing generality, we assume that the injection gas is at higher
temperature than the porous medium and the original fluids in place. Then, the
injected gas will heat up the porous medium and the original fluids in place, as well
as displacing the original fluids through the porous medium. Generally, the injec-
tion gas has a much lower heat capacity than the rock. At the upstream end, the
injected gas may first experience changes in temperature before it contacts the reser-
voir fluids. The injected gas at the leading edge will mix with the fluids downstream
and participate in the multiphase flow. The injected gas near the inlet remains at
the same composition while moving downstream, being displaced by newly injected
gases. Therefore, there exists a sub-problem at the upstream end where the injected
gas displaces the same injected gas, but at different temperature. We can further
simplify the problem by choosing the injection gas to be a pure component. The
solution to single-component gas drive is useful, and we will be studying this problem
using methane as an example. For the temperature range we consider, the methane
remains as a single gas phase, and no phase behavior calculation is needed. We will

concentrate on the resulting temperature profile and local flow velocity.

4.1 Continuous Variation

The eigenvalue problem of general form, Eq. 2.48, however, does not apply to this
single component gas displacement example, since the molar composition is always

100% methane. Hence, single component gas displacement with temperature variation
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Table 4.1: The thermodynamic properties of methane and decane.
P, T, M w

[

(atm) | (°K) | (9/gmol)
CH, | 45.4 | 190.6 16.0 0.008
CO, | 72.8 |304.2 44.0 0.225
Cuo 20.8 | 617.6 142.3 (0.490
Cis 14.0 | 717.0 226.4 0.742
CH, | CO, Cuo Cie
CH, | 0.000 | 0.100 0.052 0.035
CO, | 0.100 | 0.000 0.094 0.120
Cio | 0.052 | 0.094 0.060 0.000
Cis | 0.035 | 0.120 0.000 0.000

Table 4.2: The coefficients for ideal gas enthalpy calculation.

CH, CO, Cuo Crs |
A 558114 | 4.77805 | 28.48990 | 26.19390
B 0.564834 | 0.114433 | —0.023837 | —0.0228%5

C(x1073) | —0.282973 | 0.101132 | 0.461164 | 0.459024
D(x107°) 0.417399 | —0.026494 | —0.099786 | —0.100021
E(x10~1%) | —1.525576 | 0.034706 | 0.108353 0.108912
F(x10~'%) 1.958857 | —0.013140 | —0.033074 | —0.033390

Table 4.3: The properties of the porous medium.
Rock properties
o 0.2

pr (g/cc) 1.2
Cpm (J/g-°K) | 1.0




CHAPTER 4. TEMPERATURE VARIATION IN ONE-COMPONENT FLOW 62

is a special case. We start again from the material balance and energy balance
equations as follows:

dp , 10(pu) _
Bt + E_a-';— =0, (4.3)
and
9(puh) 3(Ph) 3(Prh ) ,
3z + ¢ +(1-¢)—F—=0, (4.4)

where p is the molar density of the ﬁmd, u is the local flow velocity, h is the molar
enthalpy of the fluid, p, is the rock density, and A, is the heat contained in the rock.

Since pressure is assumed to be constant, the molar density and molar enthalpy
of the gas depend on temperature only, i.e., p = p(T) and h = h(T). If we assume
constant porosity, density and heat capacity for the rock, then the heat contained in
the rock is only a linear function of temperature. Therefore, for the material balance
and energy balance equations, the two unknown variables are u and T.

Substituting the mass balance equation into the heat balance equation and using
temperature as the dependent variable yields

g+ z ————1 Q—O (4.5
at o) \1+ “’&—C-'- or )

where C, and Cy are the solid and fluid heat capacity defined as

_ dhr .
Cr - dT b (4'6)
and dh
Cf = ﬁ- (4-7)

Eq. 4.5 has the general form for applying the method of characteristics. It is easily
seen that the propagation velocity of the temperature wave is

dr uy .., A
rmf o (), ws
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where \* is the normalized eigenvalue, and

] 1
*=Gnmz) (49)

[ pC!

The rock heat capacity is normally much larger than that of the fluid in the
reservoir. Hence, from Eq. 4.8 it can be seen that the normalized eigenvalue is of
small value, and the propagation velocity of the temperature is reduced significantly

due to the large heat capacity of the rock.

Rearranging the mass balance equation using the fact that gas density p is only
function of temperature T results in

dp T  pOu  udpdT _
Tt o9z T Oz - (+.10)

Substituting Eq.4.10 into Eq.4.5 yields an expression for the flow velocity:

19u  1ldp 1 oT _ ’

Note in Eq. 4.11 that the variables in the coefficient for the temperature term
are functions of temperature only. Since the solution for the temperature profile is
single-valued with respect to the spatial variable x, u can be solved by integrating
Eq. 4.11 with respect to z and applying the boundary condition at z = 0.

4.2 Shocks

The rarefaction solutions constructed in the last section satisfy the material and en-
ergy balance equations but are not necessarily physical. When the characteristic
velocity of the temperature waves at upstream locations is higher than those down-
stream, the velocity rule is violated. Shock solutions are needed in order to maintain
a single-valued solution under such circumstances. In this section, we will describe
the construction of shock solutions.

Although the shock solutions are discontinuities, material balance and energy
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balance are still honored across the shocks. In order to construct a shock solution, we
start from the conservation equations of mass and energy. Denote the shock velocity
by A. The shock sweeps a finite distance Az = AAt in finite time At. We take the
small element of finite length Az = AA¢t and study the material and energy balances.
The conditions upstream and downstream of the shock are known. Hence the density
of the gas can easily be computed because it depends on the temperature only. The
unknowns are the shock velocity A and the local velocity downstream of the shock.
The change of the mass in the control element before and after the shock sweeps by is
®AAz(p* — p*). The net inflow of mass in the control element when the shock sweeps
by is p*Au*At — p? Au?At. Therefore, across the shock the material balance equation
becomes

p%(u* — oA) = p?(ut — 9A). (4.12)

Similarly, the change of enthalpy before and after the shock sweeps by the control
element is pAAz(p*h* — pthd) + (1 — ¢)AAzp,C,(T* — T*). The net inflow of en-
thalpy into the control element when the shock sweeps by is p*h* Au* At — p?h? AudAt.

Therefore, across the shock the energy balance equation becomes
pth®(u* — @A) = pthd(u? — ¢A) + (1 — @) Ap.Cr(T* — T (4.13)

Combining Eq. 4.12 and Eq. 4.13 and solving for A and u? gives

1 u® 1
A=== (—) ( ) (4.14)
1—¢ pr Cr (T =T¢
[ ¢ 1+ 32 man

and the local flow velocity downstream of the shock

I—_aprr T"‘—Td
u® = ut (1 +3 El(h-:hrl) )
- ’.——Oprr(Tu—Td -
L+ 5 "t

(4.13)
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4.3 Examples of Single-Component Single-Phase
Flow

In this section, we use C H, and Cjg to illustrate the solution construction for single-
component single-phase flow. For the following examples, the pressure is at 98.7 atm,
and the temperature range is between 250 °K and 600 °K.

4.3.1 Single-Component Single-Phase Flow of CH,

For a single-component single-phase system consisting of C H;, we start the solution
construction process by assuming that the solution consists of rarefaction waves. The
eigenvalues and the local flow velocity can be solved from Egs. 4.14 and Eq. 4.15. In
Fig. 4.1, starting upstream where temperature is higher, the eigenvalue that stands for
the propagation velocity of the temperature waves first decreases as the temperature
declines and then starts increasing after arriving at a minimum value. The behavior
of the eigenvalue is completely determined by the thermodynamic properties of the
gas, as can be seen from Eq. 4.8 and the special behavior of molar density and heat
capacity of CH, at temperatures around 200 °K, confirmed by both calculations
using the Peng-Robinson Equation of State and data from the CRC Handbook of
Physics and Chemistry (see Fig. 4.2). Starting from upstream when the eigenvalue
decreases, the velocity rule is violated. A shock solution must be constructed instead.
However, at the downstream part when the eigenvalue starts to increase. the velocity
rule is satisfied and the rarefaction solution is allowed. The remaining problem is
to determine the intermediate temperature where the upstream shock ends and the
downstream rarefaction begins.

For each possible value for this intermediate temperature, the shock velocity and
local flow velocity at the immediate downstream side of the shock can be calculated
based on Egs. 4.14 and 4.15. With the local flow velocity at the immediate down-
stream side of the shock solved, the wave velocity of the rarefaction can be computed

according to Eq. 4.8. The velocities for shocks between the injection condition and
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Figure 4.1: The variation of rarefaction wave velocity and local flow velocity along the

temperature path for single component displacement within the single-phase region
of pure CH, system.
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Figure 4.2: The variation of molar density and molar heat capacity of CH,; with
temperature. The results from calculation with Peng-Robinson Equation of State
agree well with the data from the CRC Handbook of Physics and Chemistry.
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possible intermediate temperatures are shown as a function of the intermediate tem-
perature in Fig. 4.3. The rarefaction wave velocity at the immediate downstream side
of the shock is also calculated as a function of the immediate temperature values. [f
the rarefaction wave velocity immediately downstream of the shock is lower than that
of the shock, the shock will overtake the rarefaction wave, which results in a violation
of the velocity rule. If the rarefaction wave velocity immediately downstream of the
shock is higher than the shock velocity, the velocity rule is satisfied. However, the
shock is not stable since the entropy condition is not satisfied. Given a small amount
of perturbation, the shock will collapse and spread out as increasingly fast moving rar-
efaction waves towards downstream. Therefore, the intermediate temperature should
be such a point that the shock velocity is equal to the rarefaction wave velocity im-
mediately downstream of the shock. In this example, the intermediate temperature is
solved as 301 °K, and the shock velocity is 0.01955. Therefore, the final solution for
the example is a temperature shock from the injection temperature to an intermedi-
ate temperature at 301 °K, followed by a rarefaction downstream of the shock. The
temperature profile is shown in Fig. 4.4. The analytical solution is verified by a good
match against a one-dimensional finite difference simulation, shown in Fig.4.4. In the
finite-difference simulation, a single point upstream weighting scheme is used. The
number of grid blocks is 10000, and the dimensionless time step size is 0.0001. It takes
computer time on the order of several hours to produce a well developed solution. In

comparison, the construction of analytical solution only requires less than a second
of computer time.

4.3.2 Single-Component Single-Phase Flow of Cjg

In a single-component, single-phase system of Co, the variation of the wave velocity
of the continuously varying temperature is shown in Fig. 4.5, in which case, for the
whole temperature range, the continuous wave velocity decreases monotonically with
temperature.

Therefore, it is easy to conclude that in this system, when pure C)o at a higher

temperature is injected to displace pure Cyq at a lower temperature, the temperature
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Figure 4.3: In a pure CH, system, the velocities of all possible shocks and the rar-
efaction waves located at immediate downstream of the shocks. Each possible shock

solution jumps from the injection temperature to an intermediate temperature be-
tween the initial and injection conditions.
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Figure 4.4: The temperature profile for the example where pure CH, at 600 °K is
injected into porous media saturated with 100% C H; at 250 °K.

waves upstream travel faster than those downstream, and hence violate the velocity
rule and result in discontinuous solutions. It can be confirmed from Fig. 4.6 where
for each possible shock from the injection temperature to an intermediate temper-
ature, the shock velocity is higher than the continuous wave located immediately
downstream of the shock. The final solution is simply a shock jump directly from
the injection temperature to the initial temperature, of which the velocity can be
computed easily from the conservation of mass and energy.

On the other hand, when the injected pure Cq is at lower temperature than that

of the initial pure Cyg, a continuous variation of the temperature suffices.

4.4 Summary

Gas injection problems for pure component systems with temperature variation serve
as building blocks for more complicated ones. In these scenarios, compositional effects

are only limited to the volume change caused by variation in temperature. The
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Figure 4.5: The variation of rarefaction wave velocity and local flow velocity along the
temperature path for single component displacement within the single-phase region
of pure Cjg system.
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propagation of temperature, on the other hand, is determined by the fluid flow velocity
that varies due to the volume change. For the temperature range we considered,
the molar volume of the pure components increases with temperature, resulting in
increasing propagation velocity of the temperature waves. The continuous solution
suffices if the injection temperature is lower than that of the initial fluids as the
velocity rule is satisfied. When the temperature of the injected fluids is higher than
that of the initial reservoir, shock solutions are needed as the high temperature waves
upstream travel faster and violate the velocity rule.

However, the heat capacity of a pure component does not vary monotonically with
the temperature, as can be observed in pure CHj system at very low temperature.
Instead of a simple continuous variation or shock solution, a combination of both

solution segments is needed.



Chapter 5

Temperature Variation in Binary
Flow

In this chapter, we consider gas injection problems with temperature variation in
binary systems and study the effect of temperature variation on the solution behavior.
When temperature and molar composition are chosen as the dependent variables, the
composition space can be divided into single-phase liquid, single-phase vapor and two-
phase regions by the phase envelope, as illustrated in Fig. 5.1. In common practice.
single-phase gases are injected in order to displace the original single-phase liquid oil.
Hence, the variation of molar composition and temperature from the initial condition
to the injection condition can be decomposed as solution segments within the single-
phase regions and the two-phase region, and transitions between single and two-phase
regions.

Therefore, in this chapter, we first analyze possible solutions within the single-
phase and two-phase regions, including both continuous and discontinuous solutions,
and solutions that occur across the two-phase envelope. At the end, we will com-
bine these solution segments and construct example solutions for various initial and
injection conditions of gas injection problems in binary system.

For all the example solutions in this study, pressure is fixed at 10 MPa, and
temperature varies between 250 °K and 600 °K. The phase behavior is described by

the Peng-Robinson equation of state. The multiphase flow behavior is represented by
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a fractional flow function as follows:

5t

fo= g%
524 Ex57

(5.1)

where the subscripts “/” and “v” stand for liquid and vapor phases.

5.1 Solutions in the Single-Phase Region

5.1.1 Continuous Variation in the Single-Phase Region

In a gas injection problem where both the initial and injection mixtures are in the
single-phase region and on the same side of the two-phase region, the eigenvalue

problem represented by Eq. 2.55 becomes

- a( H - -
=) (o= 528) 2[00 (~45) + 520Gl | o
(1_/\‘ (_p_HangI) Zg[(l"/\‘)( %%) I\-ll ¢me ]
which yields two eigenvalues
Al =1, (3.3)
and e
A= g L—Wo (5.4)

dZy
(3)(1)
dan /2

The eigenvalues and corresponding eigenvectors describe two sets of solution paths.

Along a solution path indicated by eigenvector €}, the temperature remains constant,
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and only the molar composition varies. Hence we call this path an isothermal path,
and the corresponding eigenvalue, the isothermal eigenvalue. A set of such isothermal
paths is illustrated in in Fig. 5.2, where the binary system is composed of CH, and
Ciuo.

Along the isothermal path in the single-phase region, the local flow velocity can
be computed from Eq. 2.56 as

1 88 dZ, 1ldu (1 or le) —0 (5.7)

33z, dn " udn \BOZ dn
Recalling the definition of overall heat concentration and heat flux in the single-
phase region as

[ = ¢pH + (1 - ¢)p, H;, (5.8)
and
© = uf = upH, (3.9)
we obtain J
3’5 =0, (5.10)

since the heat contained in the rock, A, is fixed at constant temperature and inde-
pendent of the gas composition.

Therefore, along the isothermal paths in the single-phase region. the normalized
eigenvalue A* and local flow velocity u both remain constant as the composition varies
along the paths, resulting in a constant velocity for the propagation of the composi-
tions. Physically, when a single-phase fluid is injected to displace another single-phase
fluid at identical temperature, it is a single-phase flow with neither transfer of com-
ponents between phases nor volume change of components resulting from the mass
transfer or temperature variation. Therefore, all the compositions travel downstream
at identical velocity that is equal to the injection rate.

On the other hand, along the set of solution paths described by the second set of
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eigenvectors €, the local flow velocity is computed from Eq. 2.56 as

Lo9dT L ol (L0 _, 5.11)
80T dn " udn  pBf+1520nCom \BOT dn) ’
which yields )
_ldpl-e

udn ~ p2E + 1229, Com dn’

Along this set of solution paths, the overall molar composition remains constant
but the temperature varies, and hence they are named the temperature paths. Along
a temperature path, the eigenvalue and its corresponding eigenvector are named the
temperature eigenvalue and temperature eigenvector. The temperature eigenvalue,
shown in Eq. 5.4, is significantly lower than that along the isothermal paths. due to
its direct dependence on the rock heat capacity. Generally, the rock heat capacity is
significantly larger than that of the fluids, at least for gas/oil systems. The rock ab-
sorbs or releases large amount of heat when its temperature differs from the reservoir
fluids, and hence reduces the propagation velocity of temperature front significantly.

Along the temperature paths, the molar density of the fluids decreases with in-
creasing temperature,

% <0, (5.13)
resulting in increasing local flow velocity with temperature since

du

—_— . 5.14

ar ~° (5-14)

The variation of the normalized eigenvalue, local flow velocity, and the product of
the two, which is the propagation velocity of composition and temperature, are shown
in Fig. 5.3. Along the temperature paths, compositions at lower temperature travel
slower than those at higher temperature. When an injection gas at lower temperature
is injected to displace a gas with the same composition but at higher temperature, the
lower temperature state upstream travels slower than those downstream with higher
temperature. Therefore, the continuous solution suffices. On the other hand, if a

hotter injection gas is used to displace a colder gas with the same composition, the
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higher temperature state at upstream travels faster, resulting in a violation of the
velocity rule. Hence, a discontinuous solution is needed.

5.1.2 Discontinuous Solution in the Single-Phase Region

When molar composition and temperature vary discontinuously between two points
in the single-phase region of the composition space, conservation of mass and energy
must be satisfied by the Rankine-Hugoniot condition,

u _ pd
Am = g"T_—g—d i=1,2, (5.15)
o« — e¢ -
Ah = —F—u-_—l_‘d, (016)

where the superscripts “u” and “d” represent upstream and downstream conditions
of the shock.
Across the shock, both molar compositions and temperature change discontinu-

ously, and the shock velocities computed individually from the conservation of mass
and energy must be equal.

Am = Ag. (5.17)

It can be proved that shock solutions in the single-phase region can only occur

either as isothermal shocks or as pure temperature shocks without compositional
variation, see Appendix A.l.

5.1.3 Examples in the Single-Phase Region

When both the initial and injection mixtures are at the same temperature, all the
compositions between the initial and injection mixtures propagate at the same ve-
locity as the injection rate. When the initial and injection mixtures have identical
composition but are at different temperatures, only the temperature varies, and it
occurs either continuously or discontinuously, depending on the comparison between
the temperatures of the initial and injection mixtures.
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system.
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There are a number of different scenarios to consider when the temperature and
composition of the initial and injection mixtures both differ, but still in the single-
phase region at the same side of the two-phase envelope (see Fig. 5.2).

In the first of such scenarios, the initial mixture is at a higher temperature than
that of the injection mixture. Assume that the initial mixture is located at A., and the
injection mixture at C. In the single-phase region, both continuous and discontinuous
variation follow either isothermal or temperature paths. Hence, from the injection
mixture C, the variation of temperature and composition may either follow path CD
and DA or path CB and BA. However, the propagation velocity along the solution
path CD is higher than that along path DA, and hence the path switch at D violates
the velocity rule (see Fig. 5.4). Therefore, the path CDA is eliminated, and the
correct solution path consists of a slow traveling continuous temperature variation
along path CB, and a switch at B to fast path BA where all the compositions
propagates downstream at equal velocity, as shown in Fig. 5.5.

Similar analysis can be applied for the example where the initial mixture is at B
and injection mixture at D. The solution consists of a trailing continuous variation
along temperature path DA, and a switch to the leading continuous variation along
the isothermal path AB.

For scenarios where the temperature of the initial mixture is lower than that of
the injection mixture, consider an example where the initial mixture is at C and
injection mixture at A. By continuous variation along the isothermal path AB and
then continuous variation along temperature path BC, there are two violations of
the velocity rule. Firstly, the propagation velocity along the upstream path AB is
higher than that along the downstream path BC. Secondly, along the temperature
path BC, the propagation velocity decreases monotonically towards the downstream
direction (see Fig. 5.6). Replacing the continuous variation along path BC with
a shock does not satisfy the velocity rule, because the shock velocity is still lower
than that along the upstream path AB (see Fig. 5.7). On the other hand, if we
construct the solution by following the slower temperature path AD and a switch to
the faster isothermal path DC (see Fig. 5.8), and replacing the continuous variation
along temperature path AD with a shock (see Fig. 5.9), then the velocity rule will be
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satisfied. Similar analysis can be performed for an example where the initial mixture
is at D and injection mixture at B.

Overall, it can be concluded that the solution consists of separate segments along
the isothermal or temperature paths that are arranged according to the propagation
velocity along these individual solution segments. Within each solution segment, if

continuous variation violates the velocity rule, then it must be replaced with a shock
solution segment.

5.2 Solutions in the Two-Phase Region

5.2.1 Continuous Variation in the Two-Phase Region

Consider a gas injection problem where both the initial and injection conditions are
located within the two-phase region. The eigenvalue problem for continuous variation
of the state variables is established in Appendix A.2, and two sets of eigenvalues and
eigenvectors are derived. The first eigenvalue has the form as

dfy

\:, = —2 5.1
LT ds,’ (5.18)
with a corresponding eigenvector

(3)-()
¢z 0
dn

indicating a continuous variation path direction along which the temperature re-
mains constant. The path is therefore named the isothermal path, the eigenvalue
the isothermal eigenvalue, and its corresponding eigenvector the isothermal eigenvec-
tor. In the two-phase region of a binary system, the isothermal paths are also tie
lines. The isothermal eigenvalue A}, is independent of temperature, and represents
the fractional flow behavior, as in all other problems without temperature variation,
including the Buckley-Leverett problem. The local flow velocity is constant as has
been shown in Appendix A.2. As a product of the eigenvalue A+ and the local flow
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are isothermal or tie-line paths, and the T-paths are those for which temperature
varies.

velocity, the propagation velocity of compositions along the isothermal paths is de-
termined by phase behavior through the fractional flow function, and is independent
of temperature effect. The isothermal paths are demonstrated in a sample binary
system composed of CHy and C)g in Fig. 5.10. Along one of the isothermal paths,
the variation of the isothermal eigenvalue with vapor phase saturation of the mixture
is demonstrated in Fig. 5.11. It can be observed that the isothermal eigenvalue tends
to zero as the two-phase mixture’s composition approaches the phase envelope.
The second eigenvalue is solved as

AL = flGl +.vau
T~ §GS,G, - H’

(5.20)

where G, G, and H have the complicated definition in Appendix A.2.
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Along a solution path indicated by the corresponding eigenvector, the temperature
varies. Hence, this set of solution paths is named the temperature path, the eigen-
value the temperature eigenvalue, and its corresponding eigenvector the temperature
eigenvector. Temperature paths in the two-phase region of a binary system composed
of CH, and Cj are demonstrated in Fig. 5.10.

The temperature paths are accompanied by variation in both temperature and
composition, and do not intersect with each other. When a temperature path is
traced, the normalized eigenvalue does not vary monotonically. However, the local
flow velocity increases monotonically with temperature, and it is much larger than
the normalized temperature eigenvalue. As a product of the normalized eigenvalue
and the local flow velocity, the propagation velocity increases monotonically with
temperature (see Fig. 5.12).

A maximum in temperature may occur when a temperature is traced to the vicin-
ity of the two-phase envelope, where the temperature eigenvalue is equal to the
isothermal eigenvalue, and the temperature eigenvector coincides with the isother-
mal eigenvector. The variation of temperature eigenvalue along a tie line, shown in
Fig. 5.11, also indicates that for most of a tie line path, the isothermal eigenvalue is
greater than the temperature eigenvalue, and there exist two equal-eigenvalue points
near the two-phase boundary. On the two-phase boundary, the isothermal eigenvalue
tends to zero, while the temperature eigenvalue does not change significantly.

When the injected fluid is a two-phase mixture located on the same temperature
path as a two-phase initial fluid that is at higher temperature, the states with lower
temperature stay upstream of those with higher temperature, and propagate at lower
velocity. Therefore, the velocity rule is satisfied and a continuous variation of the state
variables suffices. On the other hand, if the injection fluid is on the same temperature

path as the initial fluid but at higher temperature, the velocity rule is violated and a
discontinuous solution is needed.
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5.2.2 Discontinuous Solution in the Two-Phase Region

Just as in the single-phase region, the shocks in the two-phase region can be divided
into isothermal shocks and temperature shocks. The shock balance equation for the

discontinuous solution in the two-phase region is expressed as

utal - ulef  uol —ual
J = = = 5.21
\n =G =Gt Gy - Gi (5.21)
and ugu agd
u —-u _ .
-'\h = —FT;—'Fd— = .’\m, (0.22)
where we recall the definitions
a; = pfizi + pufolis (5.23)
Gi = pSizi + puSu¥is (5.24)
8 = pfiHi + pufuHy, (5.25)
and g
[ = piSiHy + poSuH, + ——pr H,. (5.26)

¢
When a shock occurs between two compositions on the same tie line in the two-
phase region, the contribution to the heat concentration term from the rock is canceled

in the shock balance equation, and we construct an isothermal shock as

uf = u*, (5.27)
and o g
Am = Ah = uuﬁ. (5.28)

Therefore, across an isothermal shock in the two-phase region, the local flow veloc-
ity remains unchanged, and the shock velocity is independent of temperature effect.
The expression for the isothermal shock velocity is identical to that in problems with

no temperature variation effect, including the Buckley-Leverett problem.



CHAPTER 5. TEMPERATURE VARIATION IN BINARY FLOW 94

Unlike the single-phase region, a temperature shock in the two-phase region must
be accompanied by composition variation in order to satisfy the conservation of mass

and energy across the shock. The derivation for solving temperature shocks is shown
in Appendix A .4.

5.2.3 Examples in the Two-Phase Region

Figure 5.13 shows a loop formed by two isothermal path segments AB and CD,
and two temperature path segments BC and DA in the binary system composed of
component CH, and Cjg, and it is used to illustrate some of the example solutions
that are completely within the two-phase region.

If the initial and injection mixtures are both on the same isothermal path AB or
CD, then the gas injection problem is a simple isothermal case and needs no further
discussion. If the initial and injection mixtures are located on the same temperature
path, then two scenarios need to be considered. Consider temperature path BC, if
the injection mixture is at lower temperature C, while the initial mixture at higher
temperature B, then as the state variables, including both molar composition and
temperature, vary along the temperature path BC, the propagation velocity increases
monotonically as the solution path is traced towards the downstream direction. A
continuous variation solution along the temperature path satisfies the velocity rule;
On the other hand, if the injection mixture is at higher temperature B and initial
mixture at lower temperature C, then a continuous variation along the temperature
path BC violates the velocity rule as the propagation velocity decreases towards
the downstream condition. A shock solution is needed to overcome the temperature
difference between B and C, and the shock solution does not follow the solution
paths for continuous variation. The solution can be constructed as a temperature
shock between C and E with a switch to an isothermal path solution between E
and B, or a temperature shock between B and F with a switch to an isothermal
path solution between F and C, as Fig. 5.13 illustrates. The temperature shocks
CE and BF are slower than the isothermal continuous variations along paths EB
and FC. If the state variations follow the path BE and then across shock EC, the
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Figure 5.13: Examples with initial and injection mixtures both in the two-phase
region.

solution becomes invalid because of a violation of the velocity rule. Therefore, the
final solution will consists of an upstream slow moving shock BF, and a switch to the
isothermal path between F and C.

Similar analysis can be applied to an example when the initial and injection mix-
tures are both on the same temperature path AD. In the most general configuration,
the initial and injection mixtures are neither on the same temperature path nor on
the same isothermal path, for example, the initial mixture at A and injection mixture
at C. The analysis is similar to that of the examples where the initial and injection
mixtures are on the same temperature path.

Figure 5.14 shows an expanded plot of a temperature path near the equal eigen-
value point, and an isothermal path that is tangent to the temperature path at the
equal-eigenvalue point. Along the temperature paths CE and DE, the propagation

velocity increases monotonically with temperature. Along the isothermal path AB,
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the propagation velocity decreases monotonically as the composition approaches the
two-phase envelope. The eigenvalue along the isothermal path AB is equal to that
of the temperature path at E, and has zero value at the two-phase boundary.

If an initial mixture is at A, and an injection gas at D on the temperature path,
then a continuous variation along temperature path ED and a switch at the equal-
eigenvalue point E to a continuous variation along isothermal path EA satisfies the
velocity rule. The same solution structure can be obtained if the injection composition
is at C on the temperature path. If the initial composition is at B, then the continuous
variation between E and B violates the velocity rule, and a shock along the isothermal
path EB is needed.

On the other hand, if the initial mixture is at C or D, with the injection mixture
at A or B, then continuous variation along the temperature path EC or ED violates
the velocity rule. A shock is needed to cross the temperature difference between the
initial and injection mixtures, and it does not follow the temperature path EC or
ED, and hence there is no path switch at the equal-eigenvalue point E.

5.3 Solutions across the Two-Phase Boundary

In general EOR practice, single-phase gas mixtures are often used to displace single-
phase liquid initial oils. In most settings, a two-phase region occurs for the mixtures
of injection gas and the initial oil. The variation of the state variables between
single-phase and two-phase regions can be interpreted as solution paths that cross
the two-phase boundary in the composition space.

5.3.1 Continuous Variation across the Two-Phase Boundary

Consider all possible switches between the continuous solution paths in the single-
phase region and those in the two-phase region. A set of continuous isothermal
and temperature paths in the single-phase region and two-phase region that meet at

point E on the two-phase envelope is shown in Fig. 5.15. Four scenarios need to be
considered.
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Consider a switch between the continuous isothermal path AE in the two-phase
region and the isothermal path EB in the single-phase region, as shown in Fig. 5.16.
Along path AE, the isothermal eigenvalue reduces to zero as the molar composition
approaches the two-phase boundary at E (Fig. 5.16). On the other hand, along path
BE, the eigenvalue remains constant, as Eq. 5.3 shows. As continuous isothermal
paths AE and EB are traced with a path switch at the two-phase boundary E, the
composition varies continuously, while the propagation velocity of the compositions is
discontinuous with a local minimum of zero velocity occurring at the phase boundary
E. Depending on the direction that paths AE and EB are traced, the propagation
velocity of the composition must first decrease to zero, either continuously or discon-
tinuously, and then increase again. Therefore, one of the two continuous variation
path segments AE and EB must violate the velocity rule as the two-phase boundary
is crossed by a continuous variation of composition along the isothermal paths.

Similar analysis applies to the situation where a path switch is made between
the continuous isothermal path AE in the two-phase region and the continuous tem-
perature path ED in the single-phase region, as Fig. 5.17 illustrates. Within the
two-phase region, along the continuous isothermal path AE, the propagation velocity
decreases to zero as the two-phase boundary is approached. On the other hand, in the
single-phase region, the propagation velocity of temperature increases with tempera-
ture along the continuous temperature path, starting from the two-phase boundary at
E. When paths AE and ED are traced in either direction, the propagation velocity
does not vary monotonically and results in violation of the velocity in one of the two
continuous variation segments.

When the continuous temperature path CE in the two-phase region is connected
to the continuous isothermal path EB in the single-phase region at E on the two-phase
envelope (see Fig. 5.18), the propagation velocity of the state variables is discontin-
uous since the isothermal eigenvalue along path EB is significantly larger than the
temperature eigenvalue along path CE, according to Fig. 5.11 and Eq. 5.3. More
importantly, the propagation velocity decreases when path CE is traced, and the
two-phase boundary at E is approached. Therefore, when a path switch is made at
E either from CE to EB or from BE to EC, the propagation velocity does not vary
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monotonically, and either one of the two continuous variation segments will violate
the velocity rule.

In the last case, shown in Fig. 5.19, the continuous temperature path CE in the
two-phase region is connected to the continuous temperature path ED in the single-
phase region. The propagation velocity varies continuously as the path switch occurs
at E. When the temperature path CE is traced towards the two-phase boundary at E,
the propagation velocity for the state variables decreases if the temperature decreases.
Similarly, in the single phase region, as the state variables propagate continuously
along the temperature path DE towards the two-phase boundary, the propagation
velocity decreases as temperature decreases. Therefore, a local minimum value for
the propagation velocity occurs at E. However, when continuous temperature paths
CE and ED are combined, the propagation velocity does not vary monotonically
between C to D, and a violation of velocity rule occurs on one of the two segments
when the path is traced by continuous variation.

In summary, all possible switches between the continuous isothermal and temper-
ature paths in the single-phase and two-phase regions are investigated, and proved to
be invalid due to violation of velocity rule. Therefore, the two-phase envelope must

be crossed by a discontinuous solution, hereby named a phase-change shock.

5.3.2 Phase-Change Shocks

There are two kinds of phase-change shocks that can cross the phase envelope, a
nearly isothermal phase-change shock, where only a slight temperature difference
occurs across the shock due to latent heat, and a temperature phase-change shock,
which spans a significant temperature difference. Figure 5.20 illustrates the two types
of shocks.

It is shown in Appendix A.l that the isothermal discontinuous solutions in the
single-phase region occur with constant temperature. Starting from G in the single-
phase region, isothermal shocks can be constructed with the upstream end fixed at

G, and all possible downstream ends forming a locus GA in the single-phase region.
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Similar locus can be obtained when the downstream end of the shock enters the two-
phase region, shown as locus BA in Fig. 5.20. When the downstream end of the
shock occurs on the locus GA and AB, the Rankine-Hugoniot condition is satisfied
across the shock, and hence locus GAB is also called the Hugoniot locus.

Along locus BA the temperature is not constant. Figure 5.21 shows an expanded
plot of the temperatures along the locus BA. The slight temperature difference across
a near-isothermal phase-change shock is caused by the heat of vaporization or con-
densation. It can be explained with a simple experiment, where pure CH; and Chro
initially at the same temperature are mixed at various ratios. When the mixtures ar-
rive at a thermodynamic equilibrium, a phase equilibrium calculation shows that the
combined mixtures are at slightly different temperatures, depending on the overall
compositions. The final temperature is determined by the heat content of the indi-
vidual components and the heat of mixing. Figure 5.22 shows that the temperature
of the equilibrium mixture can vary substantially from the temperature of the initial
mixtures when the flash calculation is performed holding the enthalpy constant.

The shock velocity remains constant as the downstream end of the shock moves
along locus GA, and starts declining as it enters the two-phase region. A minimum
in the phase-change shock velocity occurs as the downstream end of the phase-change
shocks reaches T on locus AB (see Fig. 5.21).

Appendix A.1 shows that the temperature shocks in the single-phase region occur
vertically with no composition variation. A Hugoniot locus in the single-phase region
starting from G can be easily obtained as GC in Fig. 5.23. When the landing point of
a temperature shock enters the two-phase region, both temperature and composition
vary across the shock (see locus CD in Fig. 5.23). The temperature shock velocity
decreases as the landing point of a temperature shock from G moves down along locus
GC. Along locus CD, the temperature shock velocity first reaches a minimum value
at T, and then starts increasing again as the locus is traced towards D.

The phase-change shock must satisfy the entropy condition. Along the locus for
the landing points of all the possible phase-change shocks starting from single-phase
mixture G (see Fig. 5.21 and Fig. 5.23), the Hugoniot locus, the shock satisfies the
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entropy condition if and only if the shock velocity satisfies
A((Z,T)%, (2, T)) < A(Z,T)*(Z,T)"), (5-29)

where the superscripts “u” and “d” represent upstream and downstream conditions
of the shock, superscript “T™ stands for an intermediate condition on the Hugoniot
condition between “u” and *d”. Figures 5.21 and 5.23 illustrate the variation of
shock velocity when the landing points of all phase-change shocks starting from G
trace along the Hugoniot locus. By a similar analysis of the entropy condition for
the Buckley-Leverett equation, it is found that the entropy condition for the phase-
change shock is satisfied if and only if the phase-change shock is a tangent shock
(in which the shock velocity matches the eigenvalue for a continuous variation on
one side of the shock), and has the minimum value along the Hugoniot locus as the
upstream end of the phase-change shock is fixed in the single-phase region. Similar
analysis can be applied to phase-change shocks where the downstream condition is
fixed in the single-phase region. In that case, the phase-change shock that satisfies
the entropy condition must have the upstream end on the Hugoniot locus and have
the maximum shock velocity. The entropy condition is used to help us determine a
unique landing point in the two-phase region when constructing a phase-change shock
from a single-phase mixture G (see Fig. 5.21 and Fig. 5.23).

5.4 Example Solutions

The solution paths for continuous variation in the single-phase region and two-phase
region can be divided into nearly isothermal ones with only slight temperature effect
due to latent heat, and ones with significant temperature variation. Similarly, the
shock solutions in the single-phase region, two-phase region, und across the two-phase
boundary can be categorized as nearly isothermal shocks and temperature shocks. In
general, the continuous variations along temperature paths and temperature shocks
travel slower than the continuous variations along isothermal paths and isothermal
shocks (see Figs. 5.3, 5.12, 5.21 and 5.23), except when near an equal-eigenvalue point



CHAPTER 5. TEMPERATURE VARIATION IN BINARY FLOW 111

the continuous variation along an isothermal path may be slower than the one along
a temperature path, and an isothermal shock slower than a temperature shock.

In a gas injection problem, the initial oil is often a single-phase liquid and the
injection gas a single-phase vapor. In the composition space, a solution path com-
posed of continuous variation solutions and shock solutions in single-phase region,
two-phase region, and across the two-phase boundary is needed for the composition
and temperature to vary along between the upstream and downstream condition. In
order for the velocity rule to be satisfied, the slower traveling solution segments, usu-
ally the ones with significant temperature difference, must stay upstream. Therefore,
starting from the injection condition, the solution usually takes continuous varia-
tion along temperature paths or temperature shocks until the initial temperature is
reached, and the rest of the solution path consists of fast moving continuous variation
along isothermal paths or isothermal shocks. The solution construction procedure is
discussed in more detail in this section.

In the first series of example solutions, we use a binary system of CHj and C)o,
fix the injection mixture composition and temperature in the vapor phase region.
and vary the temperature of the initial mixture that is in the liquid phase region.
We begin with an example where the initial temperature is only slightly lower than
that of the injection gas, and then lower the temperature of the initial mixture for

subsequent examples. A variety of solution types is observed.

5.4.1 Solution Type I

In the first example, the temperature difference between the initial and injection mix-
tures is relatively small. The solution paths and profiles are summarized in Fig. 5.24.
The compositions, temperature and propagation velocities at the key points on the
profile are summarized in Table. 5.1. The solution consists of a leading tangent near-
isothermal phase-change shock oa, where the other end of the shock a is located
on an “initial” tie-line at a slightly higher temperature than the initial mixture. A
continuous variation occurs along the initial tie-line between a and b. A tangent

near-isothermal phase-change shock bc leads the state variables from the two-phase
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Table 5.1: Analytical solution for binary displacement with temperature variation
in CH, — C)o system, where the initial oil consists of 100% C)o at 530 °K, and the
injection gas 85% CH, and 15% Cyp at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cro (°K) (Volume Fraction) (A)

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0332
c 0.8500 | 0.1500 529.345 1.0000 0.0332-0.1424
b 0.7233 | 0.2767 529.899 0.8200 0.1424
a 0.5760 | 0.4240 529.899 0.5236 1.0381
o 0.0000 | 1.0000 530.000 0.0000 1.0381

region to the single-phase region at ¢, where mixture ¢ has identical composition with
that of the injection gas, and only slightly different temperature from that of the ini-
tial tie-line. Between ¢ and the injection mixture g is a pure temperature shock cg
in the single-phase region. For this example solution, the near-isothermal segments
show small temperature variation and hence have higher propagation velocity for the
state variables. The trailing pure temperature shock in the single-phase region, on
the other hand, travels more slowly due to the heat absorption by the reservoir rock.

As we gradually lower the temperature of the initial mixture, the solution structure
remains the same, except that the temperature of the initial tie-line becomes lower.
The ending point of the trailing temperature shock in the single-phase region, c, also
moves to a lower temperature. A critical case occurs when ¢ arrives at the two-
phase boundary. The solution paths and profiles for that special case are presented
in Fig. 5.25. The compositions, temperatures and propagation velocities at the key
points on the solution profile are summarized in Table. 5.2. Since the leading part of
the solution remains largely the same as we vary the initial temperature, the difference
in solution is primarily at the trailing temperature shock and trailing phase-change
shock. In the following presentation of the solution paths and profiles, we concentrate
on the upstream segments of the solution.

However, since c is on the two-phase boundary, a continuous temperature path ce



CHAPTER 5. TEMPERATURE VARIATION IN BINARY FLOW 113

534 [
532 |

530 |

]

T(K)

528 |

""..-..l......., prarnerreeserery
. persreer?

526 |

0.0 0.2 0.4 0.6 0.8 1.0
CH, Molar Composition

548 19
544
540
536
532
528

1.0

T(K)

Sy

0.0
1.0

CH,

0.0
1.0

Cio

0.0
0.0 0.2 04 0.6 0.8 1.0 12 14 16

Elt

Figure 5.24: Solution paths and profile for Type I example, where the injection mix-
ture is 85% CH, and 15% C,q at 550 °K, and the initial mixture is pure Cjo at 530
°K. The trailing temperature shock is separated from the phase-change shock.
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Figure 5.25: Solution paths and profile for the critical case between Type I and II,
where the phase envelope is crossed by a phase-change shock that begins on the phase
envelope. The injection mixture is is 85% C Hy and 15% C)o at 550 °K, and the initial
mixture is pure Cjg at 525.996 °K.
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Table 5.2: Analytical solution for binary displacement with temperature variation in
CH, — Cyo system, where the initial oil consists of 100% C\o at 525.996 °K, and the
injection gas 85% CH, and 15% C)o at 550°K..

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cu (°K) (Volume Fraction) (N)

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0332
c 0.8500 | 0.1500 525.212 1.0000 0.0332-0.0470
b 0.7873 | 0.2167 525.893 0.9126 0.0470
a 0.5711 | 0.4289 525.893 0.5127 1.0345
o 0.0000 | 1.0000 525.996 0.0000 1.0345

in the two-phase region goes through ¢, Fig. 5.26. Along the short temperature path
segment ce, the propagation velocity for the state variables is rather indifferent to the
change in temperature, and is hard to distinguish from that of the phase-change shock
cb. The continuous variation along temperature path ce ends at an equal-eigenvalue
point e on the initial tie line, which is also the same point b that the phase-change
shock cb ends at.

Therefore, in the critical case, the near-isothermal phase-change shock transfer
smoothly into a segment of continuous variation along the temperature path in the
two-phase region. The critical case can be determined by constructing a temperature
shock in the single phase region that originates from the injection mixture g and ends
at the two-phase envelope at C, a continuous variation along temperature path CE to
the equal-eigenvalue point E, a continuous variation along isothermal path EA, and
a tangent leading phase-change shock AO. When the initial temperature is higher
than that of the critical case, the solution is of Type I. Otherwise, the solution may

belong to one of the solution types to be discussed in the following sections.

5.4.2 Solution Type II

If the temperature of the initial mixture is further reduced, the segment of continuous

variation along temperature path in the two-phase region solution segment ce ends at
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Figure 5.26: Solution paths and profile for the critical case between Type I and II,
where the trailing temperature shock ends on the phase envelope and is followed by
a continuous variation along temperature path. The injection mixture is is 85% CH,
and 15% Cjo at 550 °K, and the initial mixture is pure Cyg at 525.996 °K.
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Table 5.3: Analytical solution for binary displacement with temperature variation in
CH, — Cyo system, where the initial oil consists of 100% Cyp at 525.900 °K, and the
injection gas 85% C H, and 15% Cjq at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cho (°K) (Volume Fraction) (A)

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0331
c 0.8346 | 0.1654 525.391 0.9795 0.0331-0.0469
e 0.7874 | 0.2126 525.797 0.9124 0.0470
a 0.5710 | 0.4290 525.797 0.5124 1.0344
0 0.0000 | 1.0000 525.900 0.0000 1.0344

a point c in the interior of the two-phase region, where the temperature path intersects
with the Hugoniot locus that originates from G (shown in Fig. 5.23). At c, thereis a
constant state, and a genuine phase-change shock cg leading to the injection mixture
g, shown in Fig. 5.27. The compositions, temperatures and propagation velocities
at the key points on the solution profile are summarized in Table. 5.3. The phase-
change shock gc satisfies the entropy condition, Eq. 5.29, since the velocity of any
intermediate shock that occurs between g and an intermediate state on the Hugoniot
locus between g and c is higher than that of shock gc, as Fig. 5.23 illustrates.

For this type of solution, if we further reduce the temperature of the initial mix-
ture, the solution structure remains the same except that the continuous variation
segment ec become shorter, and point ¢ moves up on the Hugoniot locus. A critical
case occurs for an extreme case of Type II solutions when the ending point ¢ of the
continuous variation along temperature path ec arrives at the top of the Hugoniot
locus, shown in Fig. 5.28. The compositions, temperatures and propagation velocities
at the key points on the solution profile are summarized in Table. 5.4.

5.4.3 Solution Type III

If we further reduce the temperature of the initial mixture, instead of tracing the

Hugoniot locus downwards, the ending point ¢ remains at the same composition and
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Figure 5.27: Solution paths and profile for a Type II example, where the injection
mixture is is 85% CH, and 15% Cjo at 550 °K, and the initial mixture is pure Cyq
at 525.900 °K. The trailing temperature shock combines with the genuine trailing

phase-change shock, and is followed by a continuous variation along temperature
path.
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Figure 5.28: Solution paths and profile for the critical case between Type IT and
III, where the injection mixture is is 85% CHy and 15% Cio at 550 °K, and the
initial mixture is pure Cjo at 525.713 °K. The trailing temperature shock combines
with a tangent phase-change shock, and is followed by a continuous variation along
temperature path to the “initial” tie line.
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Table 5.4: Analytical solution for binary displacement with temperature variation in
CH, — C,o system, where the initial oil consists of 100% Cyo at 525.713 °K,, and the
injection gas 85% CH, and 15% Cjo at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cho (°K) (Volume Fraction) (M)

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0330
c 0.8024 | 0.1976 525.563 0.9339 0.0330-0.0469
e 0.7877 | 0.2123 525.610 0.9123 0.0469
a 0.5708 | 0.4292 525.610 0.5119 1.0342
0 0.0000 | 1.0000 525.713 0.0000 1.0342

temperature. If a phase-change shock is constructed between the injection mixture
g and a point on the Hugoniot locus to the left of the peak, then the inequality in
entropy condition Eq. 5.29 is violated since shock between g and the peak of the
Hugoniot locus ¢ (see Fig. 5.23 and Fig. 5.28) is an intermediate shock and has a
minimum shock velocity.

The continuous variation along the temperature path in the two-phase region
starts from the equal-eigenvalue point e on the initial tie-line. However, it ends
at a point d on an isothermal path that is tangent to the Hugoniot locus at c.
Between ¢ and b is a segment of continuous variation along tie-line, (see Fig. 5.29).
The compositions, temperatures and propagation velocities at the key points on the
solution profile are summarized in Table. 5.5.

When the temperature of the initial mixture is further reduced, the segment of
continuous variation along the temperature path ed becomes shorter, and it disap-
pears when the initial tie-line temperature arrives at the same temperature as that
of c. For this critical case, the solution consists of a near-isothermal leading phase-
change shock oa, a continuous variation along tie line ac, and a trailing phase-change
shock cg (see Fig. 5.30 and Table. 5.6).
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Figure 5.29: Solution paths and profile for a Type III example, where the injection
mixture is is 85% CH, and 15% Cjo at 550 °K, and the initial mixture is pure Cyo
at 525.678 °K. The trailing temperature shock combines with the tangent trailing
phase-change shock, and is followed by a continuous variation along an intermediate
tie line, then a switch to temperature path to the “initial” tie line.
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Table 5.5: Analytical solution for binary displacement with temperature variation in
CH, — Cyo system, where the initial oil consists of 100% C)o at 525.678 °K, and the
injection gas 85% CH, and 15% C)o at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cio (°K) (Volume Fraction) (N

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0330
c 0.8024 | 0.1976 525.563 0.9339 0.0330
d 0.7950 | 0.2050 525.563 0.9230 0.0398-0.0469
e 0.7877 | 0.2123 525.575 0.9124 0.0469
a 0.5708 | 0.4292 525.575 0.5118 1.0342
o 0.0000 | 1.0000 525.678 0.0000 1.0342

Table 5.6: Analytical solution for binary displacement with temperature variation in
CH, — C,, system, where the initial oil consists of 100% Cjo at 525.666 °K, and the
injection gas 85% CH, and 15% Co at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cro (°K) (Volume Fraction) (A)
g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0330
c 0.8024 | 0.1976 525.563 0.9339 0.0330
a 0.5707 | 0.4293 525.563 0.5118 1.0342
o 0.0000 | 1.0000 525.666 0.0000 1.0342
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Figure 5.30: Solution paths and profile for the critical case between Type III and IV,
where the injection mixture is is 85% CH; and 15% Cjo at 550 °K, and the initial
mixture is pure Cio at 525.666 °K. The trailing temperature shock combines with

a tangent phase-change shock, and is followed by a continuous variation along the
“initial” tie line.
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Table 5.7: Analytical solution for binary displacement with temperature variation in
CH, — Cyo system, where the initial oil consists of 100% C)e at 500.000 °K, and the
injection gas 85% CH, and 15% C)g at 550°K.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cuo (°K) (Volume Fraction) (M)

g 0.8500 | 0.1500 550.000 1.0000 0.0000-0.0330
c 0.8024 | 0.1976 525.563 0.9339 0.0330
Uu 0.7902 | 0.2098 525.563 0.9158 0.0444
d 0.5933 | 0.4067 499.902 0.5551 0.0444-0.5290
a 0.5385 | 0.4615 499.902 0.4476 1.0151
0 0.0000 { 1.0000 500.000 0.0000 1.0151

5.4.4 Solution Type IV

When the initial tie-line temperature is lower than that of ¢ in the last critical case,
the temperature difference between the two must be taken by a shock between the two
tie lines in order for the velocity rule to be satisfied, as Fig. 5.31 and Table. 5.7 show.
Therefore, the temperature difference between the initial and injection mixtures is
broken into two primary sections, one that occurs across the trailing phase-change
shock, and the other across the temperature shock between two tie lines in the two-
phase region. These two temperature shocks are connected by a continuous variation
along an isothermal path cu in the two-phase region.

5.4.5 Finite-Difference Simulation

A single-point upstream-weighted finite-difference simulator was developed to solve
the gas injection problems with temperature variation in an one-dimensional model.
Results were obtained with 5000 grid blocks in the model. For the Type I example,
the finite-difference simulation results are in good agreement with the solution paths
and profiles obtained from the analytical method. Figure 5.32 shows the comparison.
With this grid resolution, there is very little difference between the solutions.

For the Type IV example, the finite-difference solution shows significant effects of
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Figure 5.31: Solution paths and profile for a Type IV example, where the injection
mixture is is 85% CH; and 15% Cjo at 550 °K, and the initial mixture is pure Cio
at 500.000 °K. The trailing temperature shock combines with the tangent trailing
phase-change shock, and is followed by a continuous variation along an intermediate
tie line, then a nontie-line shock to the “initial” tie line.
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Figure 5.32: Comparison of finite-difference solution and analytical solution for Type
I example.
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numerical dispersion (Fig. 5.33). Especially, the trailing temperature phase-change
shock gc and the nontie-line shock ud in the two-phase region are affected signifi-
cantly. Instead of discontinuous change in temperature and composition across these
two shocks, the variation becomes continuous and follows the continuous tempera-
ture paths. However, in the solution profiles, the shock fronts are well preserved,
since along the continuous temperature paths, the propagation velocities are rather
indifferent to the changes in temperature and compositions.

For the other examples with intermediate initial temperatures between the Type
I and Type IV examples, the subtle differences in the analytical solutions due to
the change in initial condition are inundated by the numerical dispersion effect and
hard to observe in output of the finite-difference simulation. The effect of numerical
dispersion is more significant when fewer grid blocks are used in the simulation. For
a finite-difference simulation with 5000 grid blocks, the CPU time needed for each
simulation run is in the order of hours, while the analytical approach takes a fraction
of a second using an identical computer set-up.

5.4.6 Effect of Rock Heat Capacity

Rock heat capacity determines the amount of heat absorbed or released to the sur-
rounding fluids, given a temperature difference between the reservoir rock and the
reservoir fluids. Especially along the temperature paths, the propagation velocity of
the composition and temperature is affected significantly by the rock heat capacity
through the expression of temperature eigenvalues, as shown in Egs. 4.8, 5.4 and
A.34, and through the expression for the velocity of temperature shocks, shown in
Egs. 4.14 and 5.16, as the rock heat capacity participates in the heat concentration
terms.

The effect of rock heat capacity is illustrated through a series of examples where
the initial and injection mixtures are fixed and identical as the Type I example pre-
sented above. The variation of the rock heat capacity has a more significant effect
on the temperature solution segments, such as the trailing temperature shock in the

single-phase region, temperature phase-change shock and continuous variation along
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IV example.
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temperature paths in the two-phase region, than on the isothermal solution segments,
such as the isothermal phase-change shock and continuous variation along tie line in
the two-phase region. When the rock heat capacity is reduced gradually, very little
change in the leading and trailing isothermal phase-change shocks is observed, when
the shock velocities are normalized by the local flow velocity. The trailing tempera-
ture shock in the single-phase region, however, travels much faster at lower rock heat
capacity. Figure 5.34 shows that when the rock heat capacity is reduced to the 1/10
of its original value, the trailing temperature shock gc has a higher velocity than the
trailing isothermal phase-change shock cb. That would be a violation of the velocity
rule that results in a multi-valued solution, as the profiles of Fig. 5.34 show.

To resolve the violation of the velocity rule, instead of constructing a trailing
temperature shock that ends near the initial tie-line temperature, we end the trailing
temperature shock gc at a higher intermediate temperature, and from this interme-
diate state ¢ construct an isothermal phase-change shock into the two-phase region,
landing at an intermediate tie line. Now that, state c is further away from the two-
phase boundary, resulting in higher velocity of rhe trailing isothermal phase-change
shock. State ¢ is completely determined when shocks gc and cb have the same veloc-
ity and merge as one single shock, as shown in Fig. 5.35 and Table. 5.8. From b, there
is a segment of continuous variation bu along tie line, followed by a nontie-line shock
ud leading to the initial tie line, a tie line rarefaction da and a leading isothermal
phase-change shock ao. As a result, due to the decreased rock heat capacity, the

Type I example demonstrated a Type IV example solution.

5.4.7 Effect of Injection Gas Solubility

Through the example solutions in the CH,-Cyo binary system, it can be observed
that varying the temperature of the initial mixture causes very little change to the
solution structure for the downstream section, which remains to be composed of a
leading tangent phase-change shock between the interior of the two-phase region and
the initial mixture, and a continuous variation along the “initial” tie line. But the

relative position of the injection mixture to the “initial” tie line in the composition
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Figure 5.34: Type I example with rock heat capacity reduced to 1/10 of its origi-
nal value. The temperature shock gc travels faster than the phase-change shock cb
downstream, and hence violates the velocity rule.



CHAPTER 5. TEMPERATURE VARIATION IN BINARY FLOW 131

548 1 g

544 | [
. : /%

540 1 : /G
I r G

536} /

sa2 | Y ad
------------ H - a

528 | Fo---—A

T(K)

0.0 0.2 0.4 0.6 0.8 1.0

548 g
544 F
540

536
532 cbt—u

ao
528 A d -

1.0

T(K)

Sy

0.0
1.0

CH,

0.0
1.0

Cio

rﬂ
0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Elt

Figure 5.35: Correct solution construction for the Type I example with rock heat
capacity reduced to 1/10 of its original value.
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Table 5.8: Analytical solution for Type I example with rock heat capacity reduced to
1/10 of its original value.

Composition Gas Wave
Composition | (Mole Fraction) | Temperature Saturation Velocity
Label CH, Cu (°K) (Volume Fraction) ()

g 0.8500 } 0.1500 550.000 1.0000 0.0000-0.2083
c 0.6987 | 0.3013 533.491 0.7850 0.2083
u 0.6707 | 0.3293 533.491 0.9158 0.3139
d 0.6134 | 0.3866 529.250 0.6068 0.3139-6506
a 0.5752 | 0.4248 529.250 0.5218 1.0493
0 0.0000 | 1.0000 530.000 0.0000 1.0493

space is altered significantly, which determines the solution segments upstream that
connect the injection mixture with the interior of the two-phase region. When the
injection mixture is cooled to a temperature around the “initial” tie line due to heat
loss to the reservoir rock, the distance between this point and the two-phase boundary
measures the solubility of the injection gas, and determines the solution structure
for upstream segments. This idea can be better illustrated through the following
examples, where we fix the initial composition and temperature and the injection
temperature. By varying the injection composition only, we have more direct control
of the solubility of the injection gas.

Example solutions are reported for a binary system of CO; and C\s. The pressure
remains at 11.03 MPa. The initial oil is pure Ci¢ at 600 °K. The injection gas is
a single-phase mixture of CO, and Cjs at 650 °K. The temperatures are relatively
high so that in the example solutions a good range of solubility of the injection gas is
available. For each of the following examples, we change the injection gas composition
such that it moves towards the two-phase boundary in the composition space.

Figure 5.36 shows an example of a Type I solution. For this type of solution,
if the injection gas composition is slightly more enriched with the heavy component
while retaining the same temperature, the intermediate mixture represented by c will
move closer to the two-phase boundary, resulting in a slightly faster “near” isothermal
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Figure 5.36: A Type I example in the CO,-Cj¢ system, where the initial oil is pure
Cis at 600 °K. The injection gas consists of 95% CO; and 5% C)¢ at 650 °K.
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trailing tangent phase-change shock cb.

An extreme case occurs when ¢ arrives at the two-phase boundary, as shown in
Fig. 5.37. However, since the intermediate mixture c is already on the two-phase
boundary, a continuous temperature path in the two-phase region may go through
this composition and temperature, and lead to the equal-eigenvalue point on the
“initial” tie line, as shown in Fig. 5.38. The propagation velocity along the continuous
temperature path ce in the two-phase region is rather indifferent to the variation of
temperature, and remains the same as that of the phase-change shock cb. Therefore,
the two solutions are effectively identical, as has occurred in Fig. 5.25 and Fig. 5.26.

Type II and Type I1I solutions take place when the injection gas is further enriched
slightly with the heavy component. However, for the CO,-C|s system, the range of
values for varying injection composition to have Type II and Type III solutions is
so narrow that the difference in solutions is hard to distinguish from computer’s
round off error during the solution construction process. An extreme case of Type
I1I solution occurs when the continuous variation along two-phase temperature path
ce is shortened to zero so that the trailing tangent phase-change shock gb ends at
the “initial” tie line (see Fig. 5.39). Beyond this point, if the injection gas is further
enriched, a Type IV solution occurs, as shown in Fig. 5.40. The molar composition
of CO, in the injection mixtures is 0.9184 for examples in Fig. 5.37 and Fig. 5.38,
0.9180 for example in Fig. 5.39.

5.5 Summary

In this chapter, a detailed study of solutions in single-phase region, two-phase region
and solutions across the two-phase boundary is presented. Isothermal paths and
temperature paths are found for continuous variations in these regions. When velocity
rule is violated, isothermal and temperature shock solutions can be constructed. In
general, due to the relatively large rock heat capacity, the continuous variations along
isothermal paths and the isothermal shocks propagate faster than the continuous
variations along temperature paths and temperature shocks, except when near the

equal-eigenvalue points in the two-phase region. The two-phase boundary can be
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Figure 5.37: A critical case between Type I and Type II in the CO»-C\¢ system,
where the phase envelope is crossed by a phase-change shock that begins on the
phase boundary. The initial gas is pure Cjs at 600 °K. The injection gas is composed
of 91.8373% CO- and 8.1627% C)s at 650 °K.
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Figure 5.38: A critical case between Type I and Type II in the CO,-C;¢ system,
where the two-phase region is entered by a continuous variation along a temperature
path that begins from the two-phase envelope. The initial gas is pure C¢ at 600 °K.
The injection gas is composed of 91.8373% CO- and 8.1627% C.s at 650 °K.
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Figure 5.39: A critical case between Type III and Type IV in the CO,-Ci¢ system,
where the trailing tangent phase-change shock lands on the “initial” tie line directly.
The initial gas is pure Ci¢ at 600 °K. The injection gas is composed of 91.7981%
CO3 and 8.2029% Ci6 at 650 °K.
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Figure 5.40: A Type IV example in the CO»-C}s system, where the trailing tangent
phase-change shock lands on an intermediate tie line, then to the “initial” tie line via
a nontie-line shock within the two-phase region. The initial gas is pure Cjs at 600
°K . The injection gas is composed of 90% CO, and 10% C)s at 650 °K.
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crossed by phase-change shocks only, and isothermal phase-change shocks travel faster
than the temperature ones.

The continuous and discontinuous solutions in the single-phase region, two-phase
region, and across the two-phase boundary serve as building blocks for common gas
injection problems where the initial mixture is a single-phase liquid, and the injection
mixture a single-phase vapor. Dependence of the solution structure on the tempera-
ture of the initial mixture and composition of the injection gas was examined exhaus-
tively, which demonstrated a series of four common solution types. The upstream
solution segments are affected by the changes in initial and injection conditions most
significantly since the changes alter the relative position of the injection mixture to
the two-phase boundary, and the upstream waves propagate the slowest. Reducing
the rock heat capacity will speed up the continuous variations along the temperature
paths and the temperature shocks,' and may change the sequence of the upstream
solution segments that are affected by temperature variation most significantly.

The analytical solutions reported here are similar to the ternary solutions without
temperature variation in a few ways. The tangent phase-change shocks appear in both
problems, as do the path switch between temperature path and isothermal path at the
equal-eigenvalue point, and the shock solutions between two tie lines. The solutions
differ significantly, however, in the effect of heat transport. Heat is different from
a third component in that it can be transported by any component in either phase,
and absorbed or released from the reservoir rocks. The most significant variation
in temperature usually propagates slowly and stay upstream, with the rest of the
problem being a nearly isothermal solution along the initial tie line. Thus, there
is not always a tie line that corresponds to the injection mixture in problems with
temperature variation.

Separation of different gas species can be observed from the analytical solutions.
Hence, the coal bed may serve as a chromatograph. When green house gas that
primarily consists of CO; and N is injected to enhanced the recovery of coal-bed
methane, the CO, component will be sequestered by the coal bed due to the strong
affinity of COs to the coal-bed surface.



Chapter 6
Conclusions and Discussion

This chapter consists of two parts. In the first section, general conclusions are drawn
from the work performed on analytical solutions for enhanced coal-bed methane re-
covery and enhanced oil recovery by gas injection method with temperature variation.
In the second section, we discuss possible improvements of the current work and ex-

tension of current solution methods to more complicated problems.

6.1 General Conclusions

A general mathematical model was established to describe problems of one-dimensional
flow of multicomponent and multiphase mixtures through porous media, including the
effects of adsorption and desorption of fluid components at the surface of the solid
matrix and temperature variation. Analytical solutions were presented for enhanced
recovery of coal-bed methane and oil recovery by gas injection. More specific conclu-
sions are summarized in the following sections.

These analytical solutions can help us better understand the interaction of phase
behavior with multiphase flow through porous media. Compared with solutions ob-
tained with finite-difference simulations, the analytical solutions are fast and free
of numerical dispersion. The analytical solutions provide us with an opportunity
to isolate and investigate certain aspects of the driving mechanism in gas injection

processes, and potentially can be used in streamline methods to solve gas injection

140
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problems in three-dimensional models.

6.1.1 Enhanced Recovery of Coal-Bed Methane

A more specific mathematical model for the enhanced recovery of coal-bed methane
was derived for the study of adsorption and desorption of gas species at coal bed sur-
faces. The temperature effect from the general model was not included. An extended
Langmuir isotherm was used to describe the adsorption/desorption behavior. The
exchange of gas components between the flowing phase and stationary coal bed sur-
faces resembles that between multiple phases but with phase behavior that is specific
to the adsorption problem.

Solutions were constructed for binary systems and ternary systems. Analysis of

the structure of the solutions and the results for specific injection gas compositions

leads to the following conclusions:

1.

n

A solution may consist of continuous variation and discontinuous solution seg-
ments. Along solution path for a continuous variation segment, the propagation
velocity of the state variables increases monotonically towards the downstream
direction. The discontinuous solution segments must satisfy an entropy condi-
tion. All the continuous and discontinuous solution segments are arranged such

the the faster moving solution segments stay upstream of slower moving ones.

A continuous variation solution segment occurs when a mixture richer with
more strongly adsorbing components is downstream and on the solution path

for continuous variation that goes through an upstream mixture with less such

components.

When a gas that is rich in strongly adsorbing components is upstream of a
weakly adsorbing gas, a discontinuous, or shock, solution occurs.

In ternary system, when an injection gas mainly composed of CO> and N, dis-
places an initial gas rich in CHj, the total amount of time needed to recover all
the C H, originally in place is relatively indifferent to the injection gas composi-

tion. However, the gas composition at the producing end and the breakthrough
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time of the injected gas are affected by the injection composition significantly.

An injection gas rich in N, leads to a higher initial recovery rate of CH; and
earlier breakthrough of NV,.

When mixtures of CO, and N, are used as injection gas for the enhanced
coal-bed methane recovery, the separation of CO, and N, can be observed
during the gas injection processes. Effectively, the coal bed can also serve as a

chromatograph, and sequester the CO, component in the injection gas.

6.1.2 Enhanced Oil Recovery with Temperature Variation

For the enhanced oil recovery problem, temperature is allowed to vary, and the ef-
fect of adsorption and desorption is removed from the general mathematical model.
Continuous and discontinuous solution segments were sought for single-component
system, and single-phase region, two-phase region and across the phase boundary in
binary systems respectively. A detailed study of solution patterns is performed in
binary systems. It is concluded that

1.

"

For continuous variation along isothermal solution paths and isothermal shocks,

the effect of temperature variation is only caused by heat of vaporization and
condensation and is small.

For continuous variation along temperature paths and temperature shocks, the
propagation velocity for the composition and temperature is reduced signifi-
cantly due to the heat adsorption and desorption by the reservoir rock. which

has relatively large heat capacity compared to the reservoir fiuids.

In the single-phase region and for most of the two-phase region, continuous
variations along temperature paths and temperature shocks travel slower than
continuous variations along isothermal paths and isothermal shocks. However,
near the equal-eigenvalue points in the two-phase region, especially when the
two-phase mixture is close to the two-phase boundary, the temperature solution
segments, continuous or discontinuous, may have higher propagation velocity
than their isothermal counterpart.
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4. The two-phase envelope must be crossed by discontinuous solutions, or phase-
change shocks. In order to satisfy the entropy condition, the phase-change
shocks must be tangent shocks. Two kinds of phase-change shocks can be con-
structed from a single-phase mixture, the isothermal and temperature phase-
change shocks. If the single-phase mixture is a distance away from the two-
phase boundary, then the isothermal phase-change shock originated from this
single-phase mixture is faster than the temperature phase-change shock. How-
ever, when the single-phase mixture gets close to the two-phase boundary, the
isothermal phase-change shock becomes slower, while the temperature phase-
change shock velocity does not change significantly.

5. Continuous variation along temperature path and temperature shocks may oc-
cur in the two-phase region. Similar to isothermal gas injection problems in
ternary systems, a nontie-line path (temperature path) may be connected to
a tie-line path (isothermal path) at the equal-eigenvalue point. A nontie-line

shock (temperature shock) may occur between two tie lines at different temper-
atures.

6. For binary system with temperature variation, four types of solutions are found.
The transitions between different types of solutions can be driven by changes
in initial injection compositions, initial temperature, and heat capacity, and
ultimately are determined by the relative position of the initial and injection

mixtures in the composition space with respect to the two-phase region.

7. For many problems where a single-phase injection gas is chosen with tempera-
ture higher than that of the initial reservoir, most of the variation in tempera-
ture occurs near the inlet, and propagates very slowly downstream, while most
of the displacement is nearly isothermal and travels much faster. When the
single-phase injection gas is cooled down to a point in the composition space
that is sufficiently close to the two-phase envelope, the trailing near-isothermal
phase-change shock may become comparably slow with the trailing temperature

shock in the single-phase region, and the variation in temperature may occur
across the two-phase envelope.
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6.2 Possible Improvements and Future Work

The mathematical models we present here are far from accurately describing the real
world, as a number of assumptions and simplifications have been made so an attempt
to solve these problem using the analytical approach is possible.

Other than the intrinsic restrictions for the method of characteristics approach to
apply, such as limitation of one-dimensional model, constant pressure, homogeneous
reservoir rock properties, and constant initial and injection conditions, improvements
can still be made to the rest of the assumptions and restrictions, and will be discussed

for the coal-bed methane and temperature variation problems respectively.

6.2.1 Enhanced Recovery of Coal-Bed Methane

In this study, only a single gaseous phase is considered. An immediate improvement
would be to include an aqueous phase that describe the real reservoir flow more
accurately. The difficulties may come from the complexity at describing the the
adsorption behavior of a multicomponent multiphase mixture at the coal-bed surfaces,
and phase equilibrium calculation when multiphase adsorption is included.

If not adding an additional phase, another improvement that is possible to make
is to increase the number of components in the system. Beyond ternary system, the
solution paths will be significantly more complicated. However, the solution method
remains the same, that is, to seek all the possible continuous and discontinuous so-
lution solution segments, arrange them according to the requirement of velocity rule,
and eliminate the non-physical combinations that violates velocity rule, the entropy
condition or the continuity condition.

6.2.2 Enhanced Oil Recovery with Temperature Variation

As the solutions with temperature variation have been studied in great detail in binary
systems, a natural move is to increase the complexity by attacking gas problems
in ternary systems with temperature variation. If the gas injection problems with

temperature variation in binary systems are somewhat parallel to isothermal gas
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injection problems in ternary systems, regarding flow of heat as a special component,
then with ternary systems and temperature variation, it is equivalent to isothermal
gas injection problems in quaternary systems. The solution segments can still be
divided into continuous and discontinuous, near-isothermal and temperature solution
categories. The composition space now becomes three-dimensional, with isothermal
ternary diagrams stacked up along a temperature axis.

When there exists a temperature difference between the initial and injection mix-
tures, the temperature difference will be taken by either a continuous or discontinuous
variation across two ternary diagrams at different temperatures, with the downstream
solution segments in a ternary diagram near the initial temperature.

The difficulties for this attempt to improve the model mainly focus on solving the
phase-change shock, where convergence is more difficult to achieve as the two-phase
side may be located at a different plane of unknown temperature and with many
tie lines. Analysis of continuous and discontinuous temperature variation within the
two-phase region can be also very challenging as the temperature eigenvalues and
eigenvectors have an extremely complicated form. While this problem is certainly
challenging, it should be possible to perform the analysis using procedures and tools
similar to those developed here.

Once the phase-change shocks in a ternary system with temperature variation
can be solved with confidence, complete solutions can be constructed with relative
ease for Type I solution at least, as most of the temperature difference occurs as
temperature variation within the single-phase region, and the propagation of this
temperature variation is separated from the downstream near-isothermal solution
patterns. Hence, the Type I solution can be constructed as a trailing single-phase
temperature shock that varies from the injection composition and temperature to
a temperature value near the initial temperature, from where a phase-change shock
brings the state variables into the interior of the two-phase region to a ternary plane
of slightly different temperature. Isothermal tie line paths solution and nontie-line
paths solutions may occur in this ternary diagram that takes the state variables to
the “initial” tie line, from where a leading phase-change shock leads to the initial
condition with slightly different temperature.
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Appendix A

Miscellaneous Proofs and

Derivations

A.1 Shock Solution in the Single-Phase Region of
Binary Systems

Shock solutions in the single-phase region can only occur either as an isothermal shock
or as a pure temperature shock without compositional variation. To prove this, we
first assume that across a shock that is completely within the single-phase region.

both temperature and composition are different, i.e.,

2 # 2, (A.1)
T # T (A.2)

The Rankine-Hugoniot condition states a mass balance across the shock as

A = u"p"z'{—u“p“z‘f _ uupuzg_udpdzczl (1\3)
svm = u t _ dod - w U _ adod e
P2y 21 P 2y — P Z
In a binary system, we have
Z12‘ =1 _ztl‘x (A'4)
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# = 1-20 (A.5)
Therefore,
. otz — udplzd  (udpt — udp?) — (urptzt — u?pdz9) (A.6)
ST T ezt — e (0" = p%) = (p*2t — p%2D) h

which can be simplified to

uupu _ udpd
pu — p“

u u 114 nd 4
utptzf — utp®zy

T T —ptf (A1)
By further simplification, we have
2b(ut —uf) = 2 (u* - u?). (A.8)
Since 2z # z¢ by our assumption, we have
u* = ut. (A.9)
Substitution of u% in the expression for mass shock velocity gives
Ap =u® =t (A.10)

On the other hand, the Rankine-Hugoniot condition also states conservation of

energy as
, _ w4 uupuhu_udpdhd
An=An=u"=u = R AR+ p O (T5 = T9) (A.11)

which yields
T = T4, (A.12)

This conclusion contradicts with the assumption T% # T¢. Therefore, it is invalid

to assume that across a single-phase shock, both temperature and composition are
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different. A single-phase shock must occur either along a constant temperature di-
rection, which will be called an isothermal shock, or along a constant composition
direction, a temperature shock.

A.2 Continuous Variation in the Two-Phase Re-

gion of Binary Systems

The eigenvalue problem represented by Eq. 2.55 becomes

[F-\G)=0=
[ t { a(?r‘)— ]
(L -2)E (f"\'s)[gw ay | T
dSv azZ, 8 aT

v _ (A ANyrp?)
[;J‘I(Z"Hvxl—p;ff') } e [ g } i

o
(A-13)
Az2p) _

df* _ ys\ 3Ss° (ff =5 ma:arggm) +
(ds" —A ) oz, ';( aT

v o 1y __ Ay2p”)
[E.yquu fzp )« [ ] (f* — A"S?) [ T ehe ]+

%(p"H" - p' H') —;——laT
L X% 152 omCom
One of the eigenvalues is o

with a corresponding eigenvector

|: dn :l:[l], (A.153)
dr 0
dn

which indicates a direction where the temperature remains constant, a tie-line in the

binary system. We call this eigenvalue the isothermal eigenvalue and its corresponding
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eigenvector the isothermal eigenvector.

The other eigenvalue Ar, which we call temperature eigenvalue, can be solved from

Az1ph)
(f! = A*SY [ ﬂagzp,H,) ] +
(v1p° — 210" - -l
S(pH® - pHY) | (f*=X5) [ oy Bl B } +
8 ar
X520 Cm
=0 (A.16)
Nzapt _
(ff = A=shH [ g:g;p‘fl‘) } +
[ (Y20 — 220')~ ] )
& (p*H® ~ pHY) (f" = A*5") { ;(.,T(!,,,,] ] +
3 or
A" 552 0mCom
Define the following variables pertinent to a given tie-line:
A = pp’ —zp, (A.17)
A2 = yp’ —z2p, (A.18)
B = p'H'-pH, (A.19)
4
cl = a(;‘lf’), (A.20)
cl = a(g‘q’f ) (A.21)
{
o = dod) (a2
C; = a(g;’,’ ), (A.23)
{rrt
D' = a(gf ) (A.24)
pr = X2, (A.25)
E = =2omCom, (A.26)



Appendix 155

and the variables pertinent to a given composition on the given tie-line:

ay
= = A2
= & A28
F, 3 (A.28)

Then we have

(ff = A"sh)(Cl - FiDY)+
A -FB (f*-XS)(C - D)+
A'F\E

(ff = A*SY(CL - F2DY)+
Ay — BB (fY — A°S¥)(CY — IRDV)+
N FBE

Expansion of the determinant gives

(f' = A"8") [(ChA1 = ClAs) + Fi(D' A — C3B) — Fy(D' Ay - ciB))
+ (f*=N\"8") [(C3A1 — CLAs) + Fi(D" A2 — C3B) — Fy(D" A, - CtB)]
+ /\'E(Fg:‘h - Fl."lg) =0. (:\30)

Define

G! = (ClA, - C'Ay) + Fy(D'4; — CiB) — F»(D'A, - C1B), (A.31)

G' = (CYA, —CV'4,)+ F\(D"4, - C3B) — F»(D*A, — CYB), (A.32)

H = E(FA; - F1A,). (A.33)
Then

NI i<k il
T SGFSsG -H

(A.34)
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A.3 Isothermal Shock in the Two-Phase Region of

Binary Systems

Consider an isothermal shock in the two-phase region of a binary system. The shock
occurs along a tie line. It satisfies conservation of mass and energy in an integral
form, i.e., a Rankine-Hugoniot condition,

F—F} s -
AM = m, 1= 1,2 (A3D)
oL — ed
.\H = -F‘_—-F—d’ (A36)

where the superscripts “u” and “d” stand for upstream and downstream conditions
of the shock.

Substitution of the definition for the flux and concentration terms for mass and
energy,

F, = u(pzifi+ puvifo), (A.37)
Gi = pziSt+ puliSu, (A.38)
e = u(phifi + puhofo), (A.39)
T = pthiSi+ puhvSu, (A.10)
yields
Ly = uuflu —_ udf‘d Yi pv(uu —_ ud) (A.41)

Sy - S¢ pzi — puyi S¢t— SY
If the local flow velocity varies across the isothermal shock, t.e.,

u* £ ul, (A.42)

then for component 1 and 2 in the binary system, we have

% _ ¥ _ l-u __ 1
PITL — Pu¥i | AiT2 — PuY2  (Pr— Pu) — (AiTL — Pulr)  PL— P

; (A.43)
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which leads to
Iy =Y. (A.44)
This is a conclusion that requires a zero-length tie line. Therefore, it is invalid

to assume that across an isothermal shock in the two-phase region, the local flow

velocity varies. Thus the shock velocity according to conservation of mass across the
shock is

AM =SUsm—cd — Ag. (.‘\.45)

A.4 Solving Temperature Shocks

Recall the definition for molar concentration for the components and enthalpy as

Gi = pziS;+ pu¥iSu. (A.46)
R = uqy, (A"l?)
1_
O = AHS+pHoS, + 5 2onComAT, (A.48)
0 = uf, (A.49)
where
a; = pzifi+ polifus (A.50)
B = pHS + puH,S,. (A.51)

The Rankine-Hugoniot condition for binary systems states

uta® — ula? utal — ufod (A52)
Gy —Gi Gy —Gi A2
utat — utad u*g® — udgd \53
Gr—Gf ~ T re-rd (4.53)

where the superscript “u” stands for the upstream condition of the shock, and the
superscript “d” the downstream condition.
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We assume that all the variables upstream of the shock are known. The unknowns

that remain to be solved are vapor phase saturation, S¢, and local flow velocity, ud,

downstream of the shock. One way to solve the problem is by using the Newton-

Ralphson method. Objective functions can be formulated from the Rankine-Hugoniot

conditions as

Ff-F! Fp-Ff
d ,dy _ 1 L 2 2
FGnY) = Grrei T G-
Fu_Fd eu_@d

d dy _ 1 b
FlSov’) = Grogd T RO

For each iteration, the following system must be solved,

(

2

O Q|
i

23

[

<

2\ (st
%%'5 Au“

where the Jacobian matrix can be evaluated as

0FL
54

OF,
954

OF,
ud
0F»
ud

--(2)

1 OQF¢ F*—F% 9G¢
TG -Giast T (Gr - GH2 oSt
L1 9P Fy-Ff oG4
G¥-GiaSe  (G% - G%)29se’
1 aF{‘+ Fr - F¢ 8G%
G¥ —G49S¢ " (Gt — GY)2 952
1 89t e*-ed ard
"Tu—r495¢ (T —9)298¢
ot ol

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)
(A.59)

(A.60)



